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ABSTRACT 

 Methanogenesis coupled to the Wood-Ljungdahl pathway and its reversal, the 

anaerobic oxidation of methane, AOM, are believed to be among the most ancient 

metabolisms known to life on Earth. Recent advances in cultivation-independent 

techniques utilizing high-throughput sequencing, cellular imaging, geochemical modeling 

and experimentation, and bioinformatics are rapidly altering the ways in which we 

investigate complex microbial communities in the environment. In particular, the 

application of these methods to the exploration of the deep biosphere has ignited a 

renaissance in the study of methane biogeochemistry, as mining efforts into these 

environments – both literally and computationally – continue to reveal that methanogens 

and anaerobic methanotrophs (ANMEs) are more diverse, pervasive, and resilient than 

ever previously thought.  

 In the spirit of continuing to “move the goalposts” that define the extent of 

microbial methane metabolisms, this dissertation explores the ecophysiologies of 

methanogens and ANMEs surviving under extreme conditions which characterize the 

deep biosphere of Earth and Mars. We develop a novel fluorescent in situ hybridization 

method, FISH-TAMB, to visualize mRNA in living methanogens and ANMEs, 

discussing its potential to characterize microbial dark matter and identify horizontal gene 

transfer based on metabolic function. We then investigate oligotrophic continental 

fracture fluid from South Africa, characterizing the potential of AOM in a novel species 

of phylum Candidatus “Bathyarchaeota”. We then explore the high-pressure, high-

temperature sub-seafloor sediments of the Nankai Trough, employing high-pressure 

cultivation, stable isotope probing, 16S rDNA sequencing, and metagenomics to hunt for 
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the first experimental evidence of thermo-piezotolerant AOM. Finally, we subject axenic 

cultures of the methanogen Methanosarcina barkeri to controlled incubations simulating 

freezing and highly oxidizing conditions of a perchlorate-riddled Mars Special Region, 

utilizing transcriptomics to better understand the potential of biological methanogenesis 

on the Red Planet. Collectively, these results demonstrate the remarkable tenacity of 

methanogens and ANMEs to survive on the biotic fringe. 
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Figure I. A fossilized track of an unidentified therapod dinosaur from the 167 million 
year-old Sundance Formation in Big Horn County, Wyoming. 7 year-old Rachel for 
scale.   
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“The history of evolution is that life escapes all barriers. Life breaks free. Life expands to 
new territories. Painfully, perhaps even dangerously. But life finds a way.” 

 
– Dr. Ian Malcolm, Jurassic Park (1990), by Michael Crichton 
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CHAPTER 1 

Introduction 
1.1 PREFACE  

The Earth’s habitable deep subsurface is a geochemically heterogeneous landscape 

that plays host to one of the largest and most diverse reservoirs of microbial biomass on 

the planet (Onstott et al., 2009; Kallmeyer et al., 2012; Bar-On et al., 2018; Magnabosco 

et al., 2018; Orsi, 2018). Though we have explored less than 0.01% of the deep 

biosphere’s expected habitable volume (Cario et al., 2019), we have found microbial life 

5.3 km below land surface (Szewzyk et al., 1994) and 2.5 km below the seafloor (10.5 

km below sea level) (Inagaki et al., 2015). Relative to most surface environments, many 

sites in the deep biosphere are characterized by extreme temperatures, pH, salinities, 

pressures, energy limitation, nutrient limitation, or combinations thereof. The transition 

zone where conditions become too inhospitable for even the most extreme organisms to 

survive is known as the biotic fringe (Shock, 2014), and its study is of great interest to 

astrobiological investigations aiming to explore the potential of subsurface life on 

extraterrestrial bodies (e.g., Jones et al., 2018; Onstott et al., 2019).  

 Despite extreme conditions, the deep biosphere is estimated to account for 15% of 

the Earth’s total biomass and perhaps up to 90% of all Bacteria and Archaea (Bar-On et 

al., 2018). The vast majority of these organisms are microbial dark matter; that is, they 

are only known from environmental sequencing have not been obtained in pure culture 

(Marcy et al., 2007; Rinke et al., 2013). To infer their ecophysiological potentials, we can 

rely on high-throughput sequencing of molecular marker genes (amplicon sequencing) or 

environmental DNA (metagenomics). To appreciate their contributions to global 
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biogeochemical cycles, however, we must elucidate their metabolic activities. In this 

dissertation we accomplish this by combining the aforementioned methodologies with 

fluorescent in situ hybridization (FISH) of messenger RNA and stable isotope probing 

(SIP).  

While research into the geochemistry and microbial ecology of the deep oligotrophic 

biosphere can help inform us in the search for life beyond this planet, we can also learn 

about the limits of life from model organisms. Armed with extensive descriptions of 

cellular physiologies, environmental distributions, and fully sequenced genomes, we can 

comb the literature and hand pick microorganisms of interest to poke, prod, and push 

under controlled extreme conditions. By employing techniques such RNA-Seq to monitor 

global shifts in gene expression, we can thoroughly characterize metabolic responses of 

cells to the conditions to which we expose them. The insights we gain from this work 

helps construct an interpretive framework to ultimately quantify biological and 

biosignature potential in extreme environments on Earth and beyond. 

 

1.2 THE DEEP BIOSPHERE’S CONNECTION TO THE METHANE CYCLE 

Methane (CH4) is the second most abundant greenhouse gas behind carbon 

dioxide (CO2) in Earth’s atmosphere, contributing an estimated 20% of total radiative 

forcing by greenhouse gases since pre-industrial times (Kirschke et al., 2013). A 

relatively long-lived greenhouse gas with an atmospheric residence time of ~200 years, 

CH4 is 85 times more potent than CO2 in the first 20 years of residence, and 20 times 

more potent after a century (Jackson et al., 2019). Nearly 70% of CH4 is biogenic in 
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origin, produced by methanogenic Archaea living in anaerobic environments (Conrad, 

2009).   

Our understanding of the global CH4 budget is in a constant state of flux. Unlike 

CO2, which has steadily risen in concentration in the atmosphere since monthly 

measurements began at the Mauna Loa Observatory in 1958 (NOAA, 2018), CH4 build 

up in the atmosphere appeared to stabilize to 1773 ± 3 ppb at the beginning of the 21st 

century after nearly tripling from pre-industrial times (Figure 1.1A,B; Kirschke et al., 

2013). Atmospheric CH4 growth resumed again by 2007 and has continued since (Rigby 

et al., 2008; Turner et al., 2019). At the time of this writing, global CH4 levels are 1877 ± 

3 ppb (NOAA; Figure 1.1C).  

 

 

 Top-down inversions of the global CH4 budget (Figure 1.2) estimate annual 

emissions in the range of about 500-600 Tg yr-1 and sinks between 514 – 560 Tg CH4 yr-1 

Figure 1.1. Mean atmospheric 
CH4 mixing ratios (A) back to 
1000 C.E. based on ice core 
records (Etheridge et al., 1998), 
(B) since the establishment of 
monthly measurements by 
NOAA’s Global Monitoring 
Division (Dlugokencky et al., 
1994), and (C) since the start of 
the author’s Ph.D.  
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(Conrad, 2009; Dlugokencky et al., 2011; Kirschke et al., 2013; Saunois et al., 2016). 

While these global fluxes are reasonably well constrained, estimates for individual 

sectors of sources and sinks can vary significantly. For example, predicted global rates of 

the anaerobic oxidation of methane (AOM) range between 45 Tg yr-1 (Egger et al., 2018) 

and 304 Tg yr-1 (Hinrichs and Boetius, 2002). Such large discrepancies are due to a 

combination of limited sampling of the continental deep biosphere and oligotrophic sub-

seafloor sediments, as well as coarse extrapolations of data from productive continental 

shelves over large areas.  

Sulfate-dependent AOM, which couples the reduction of sulfate with methane 

oxidation, is considered to be the dominant AOM sink due to its predominance in 

continental margin sediments (Valentine and Reeburgh, 2000). However, recent 

discoveries of additional electron acceptors beside sulfate (e.g., Raghoebarsing et al., 

2006; Beal et al., 2009; Ettwig et al., 2010; Ettwig et al., 2016; Cai et al., 2018; Leu et al., 

2020), coupled to an observed global mean sulfate:methane net flux ratio of 1.4:1 (Egger 

et al., 2018) demonstrate that sulfate-methane transition zones, or SMTZs, are not the 

only significant AOM sinks. By one bottom-up estimation for the 2000s, a stoichiometric 

imbalance of almost 50 Tg yr-1 was calculated between mean global emissions and sinks, 

significantly larger than the observed growth rate of 6 Tg CH4 yr-1 (Kirschke et al., 2013). 

“Cryptic” CH4 cycling – where AOM and methanogenesis proceed concurrently along 

small and geochemically near-indiscernible temporospatial scales (Beulig et al., 2019) is 

difficult to quantify and generally ignored by these models (Egger et al., 2018).  To be 

certain, continued exploration of AOM in the deep biosphere is essential filling these 

gaps in our understanding. 
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Figure 1.2. Global methane sources, sinks, and fluxes. Modified from Thauer et al. 
(2008) with additional inputs from Conrad (2009), Dlugokencky et al. (2011), Kirschke 
et al. (2013), and Egger et al. (2018).  

 

1.3 STUDY SITES 

1.3.1 BE326 BH2 borehole, Beatrix Gold Mine, South Africa. BE326 BH2 is a 

horizontal borehole located 1.34 km below land surface (kmbls) in South Africa’s Beatrix 

Gold Mine (S 28.235º, E 26.795º). Beatrix Mine is situated in the southwestern range of 

the 2.81± 0.2 Ga Witwatersrand Supergroup, a 5-7 km-thick intracratonic sedimentary 

basin that hosts the world’s largest gold reserve and some of its deepest mines (Frimmel 

and Minter, 2002; Onstott et al., 2006) (Figure 1.3). BE326 BH2 has been the subject of 

numerous biogeochemical and molecular studies since it was first drilled in 2007. 



 

 

Chapter 1: 
Introduction 

6 

Through a combination of gene amplicon surveys (Magnabosco et al., 2014), 

metagenomics (Lau et al., 2014), metatranscriptomics (Lau et al., 2016), metaproteomics 

(Lau et al., 2016), and isotopic analyses of dissolved gases and bacterial phospholipid 

fatty acids (PLFAs) (Simkus et al., 2016), BE326 BH2 has been characterized as a 

Subsurface Lithoautotrophic  Microbial Ecosystem (SLiME) (Stevens and McKinley, 

1995) with a CH4-based carbon cycle mediated by low-abundance methanogens and 

anaerobic methanotrophs (ANMEs) existing in close metabolic syntrophy with sulfate 

reducing bacteria and denitrifying sulfur oxidizers (Figure 1.4).   

 

Figure 1.3. Geologic setting 
of Beatrix Mine (A) within 
the Witwatersrand Basin and 
(B) local stratigraphy of the 
Beatrix Reef orebody. 
Approximate location of the 
BE326 BH2 borehole is 
indicated by gold star. 
Modified from figures 
obtained from Mngadi et al. 
(2019) and Gold Fields, Ltd. 
(Johannesburg, South Africa). 
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Figure 1.4. Isotopic and metatranscriptomic support for a CH4-supported SLiME at 
BE326 BH2. (A)  δ13C values for dissolved organic carbon (DOC), dissolved inorganic 
carbon (DIC), CH4, and PLFAs (modified from Simkus et al., 2016 with permission of 
the lead author). (B) C1 carbon flow map at BE326 BH2 based on transcriptional 
activity of methanogens (Met), anaerobic methanotrophs (ANME), sulfate reducing 
bacteria (SRB), and sulfur oxidizing bacteria (SRB). Arrows indicate direction of 
metabolite flow. Percent abundance (upper right-hand corner of boxes) inferred from 
relative abundance of ribosomal proteins in metatranscriptome. Figure taken from Lau 
et al. (2016) with lead author’s permission.  

 

1.3.2 IODP 370 site C0023A, Nankai Trough accretionary complex. International 

Ocean Discovery Program (IODP) Expedition 370 established drilling site C0023A on 17 

September 2016 at the protothrust zone of the Nankai Trough, approximately 180 km 

offshore Cape Muroto, Japan  (N 32.367˚, E 134.978˚). Site C0023A lies within the 

Muroto Transect within the vicinity of other Ocean Drilling Program (ODP) sites 1173, 

1174, and 808 (Moore et al., 2001; Moore et al., 2005). Starting at the ocean floor at a 

water depth of 4776 m, site C0023A continues an additional 1180 m into sub-seafloor 

A B
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sediment, crossing the décollement zone of the Eurasian and Philippine Sea plate 

boundary and spanning a temperature gradient of ~2˚C to ~130˚C (Figure 1.5; Heuer et 

al., 2017). Because of this gradual temperature increase, a primary objective of 

Expedition 370 was to identify biotic-abiotic transition zones and examine the factors that  

control the biomass, activity, and diversity of microbial communities inhabiting so-called 

“biotic fringe” environments (Hinrichs et al., 2016).  
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Figure 1.5. Regional context of site C0023A and the greater Muroto Transect. (A) 
Heat flow map generated from data collected by marine probes (large circles), bottom-
simulating reflectors (small circles), and boreholes (stars). Circles on land reflect heat 
flow values collected from boreholes. (B) Depth-covered pre-stack time migration 
seismic section of site C0023A overlain with geological interpretation. (C) Schematic 
interpretation of the Muroto Transect showing tectonic regions and drill sites of ODP 
Leg 190 and IODP 370 for reference. Modified from Moore et al. (2001) and Heuer et 
al. (2017) with permission. Abbreviations: MSL, meters below sea level; MBSL, 
meters below seafloor; BSL, bottom-simulating radar. 

  

1.4 OUTLINE OF DISSERTATION 

 Chapter 2 focuses on the development and application of fluorescent in situ 

hybridization of transcript-annealing molecular beacons (FISH-TAMB), a novel 
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molecular technique capable of fluorescently labeling messenger RNA (mRNA) of target 

genes in living cells. The idea of FISH-TAMB was inspired by a growing urgency in the 

field of microbial ecology to identify metabolically active microorganisms in complex 

communities without biasing against 16S rRNA gene phylogeny and without killing 

biomass via cellular fixation. In this chapter we first describe the synthesis of FISH-

TAMB probes from constituent molecular beacon sequences (Goel et al., 2005) and cell-

penetrating peptides (Patel et al., 2007). We then demonstrate the co-application of FISH-

TAMB with confocal microscopy, flow cytometry, and traditional 16S rRNA FISH (e.g., 

DeLong et al., 1989; Amann et al., 1990) to identify mRNA transcribed from methyl 

coenzyme M reductase A (McrA) in a pure culture of the methanogen Methanosarcina 

barkeri strain Schnellen (M. barkeri), as well as ANME-2 enriched from BE326 BH2. To 

assess the potential of FISH-TAMB to identify mRNA from functional genes obtained 

via horizontal gene transfer, we combined FISH-TAMB with flow cytometry to identify 

McrA transformed onto an inducible operon in Escherichia coli str JM109 (E. coli 

mcrA+) from M. barkeri. Finally, we measure growth curves of FISH-TAMB-treated M. 

barkeri and E. coli and compare them with those of untreated populations to assess how 

FISH-TAMB may impact cellular viability for continued study post-analysis.  

 In Chapter 3 we parse metagenomic sequence data generated from BE326 BH2 

DNA to assemble and characterize a nearly complete genome belonging to a novel 

species – Candidatus (Ca.) “Bathyarchaeota” BE326-BA-RLH (Harris et al., 2018). The 

Ca. “Bathyarchaeota” are known as a microbial dark matter phylum; that is, they are only 

known from environmental sequencing data and do not possess any lineages that have 

been successfully isolated in pure culture (Marcy et al., 2007). In this chapter we utilize 
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bioinformatics to describe the phylogeny and metabolic potential of the metagenome-

assembled genome (MAG) belonging to Ca. “Bathyarchaeota” BE326-BA-RLH. We 

employ maximum likelihood analysis to characterize the 16S rRNA gene phylogeny of 

the Ca. BE326-BA-RLH within the Ca. Bathyarchaeota, particularly in relation to 

putatively described methanogenic taxa (Evans et al., 2015). Using both sequence- and 

structure-based homology searches, we characterize protein-encoding genes specific to 

pathways for methanogenesis and dissimilatory nitrate reduction to ammonia (DNRA), 

assessing the potential of Ca. BE326-BA-RLH to perform AOM. This includes a 

description of a divergent McrA sequence from the BE326 BH2 metagenome that deeply 

roots the Ca. “Bathyarchaeota” phylum based on maximum likelihood phylogenetic 

analysis.  

 The discovery of novel CH4-metabolizing microorganisms plainly illustrates the 

infancy of our understanding of deep biosphere biogeochemical cycling and the diversity 

and distribution of the functional groups that mediate it. Pursuant to this issue, in Chapter 

4 we aim to provide evidence of a “missing niche” in biological CH4 cycling: 

thermophilic, piezophilic ANMEs. To accomplish this, we switch gears from the deep 

continental subsurface of South Africa to the deep sub-seafloor of the Nankai Trough, 

applying a suite of methodologies of methodologies, corroborating the data with those 

collected by other Expedition 370 scientists, to assess for evidence of AOM in the deep, 

hot biosphere. We first perform geochemical modeling to assess the thermodynamic 

favorability of AOM metabolisms for 9 unique depths, each constrained by their in situ 

physical properties and geochemistry. We then employ SIP in combination with high-

pressure cultivation to trace the oxidation of 13CH4 under simulated in situ pressure and 
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temperature conditions. Grappling with noisy, inconclusive data tied to low in situ cell 

counts, we attempt FISH-TAMB and 16S rRNA FISH to directly visualize active 

ANMEs in our enrichments. We compare these results with genomic evidence for 

ANMEs based on a 16S rRNA gene survey of fresh core sediment as well as 

metagenomes from parallel incubations enriched with natural abundance CH4 at ambient 

atmospheric pressure.  

 Looking beyond Earth, in Chapter 5 we take our inspiration from nearly two 

decades of research into Martian methane to investigate how methanogens may survive 

under simulated subsurface conditions of Mars, specifically under freezing temperatures 

and in the presence of chaotropic perchlorate salts. We tracked CH4 production and 

changes in global gene expression patterns via transcriptomics in Methanosarcina barkeri 

strain MS following prolonged enrichment at 30˚C or 0˚C, with and without high 

concentrations (10 mM) of dissolved sodium-, magnesium, or calcium perchlorate. We 

discuss the potential of abiotic interactions of perchlorate anions with media components 

and supplied H2 gas. We assess our findings in the context of previously published 

observations to speculate how catalytic nickel and H2 may contribute to the reduction of 

perchlorate in methanogenic cultures. We conclude the chapter by discussing how these 

insights from transcriptomics can help us contextualize biology as a potential source of 

CH4 observed on Mars.  

 Chapter 6 reviews the advances generated by this dissertation as well as the 

questions whose answers remain at large. We then look to the next generation of 

powerful up-and-coming molecular, geochemical, and computational tools and speculate 
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how a rapidly advancing state of the art will help us resolve the story of microbial 

methane cycling on Earth – and how it can inform us in the search for life beyond.  
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CHAPTER 2 
 
Using FISH-TAMB, a fixation-free mRNA fluorescent labeling technique, to reveal 
active minority methane-cycling lineages 
 
Keywords: molecular beacons, cell-penetrating peptides, fluorescence in situ 
hybridization, live cell imaging, methanogens, anaerobic methanotrophs, deep biosphere 
 
 
2.1 ABSTRACT 
We report on the development of fluorescent in situ hybridization of transcript-annealing 
molecular beacons (FISH-TAMB) to label messenger RNA (mRNA) of methyl-
coenzyme M reductase A (mcrA) in living methanogens and anaerobic methanotrophic 
archaea (ANMEs). FISH-TAMB utilizes polyarginine cell-penetrating peptides to deliver 
molecular beacons (MBs) across prokaryotic cell walls and membranes, fluorescently 
labeling cells when MBs hybridize to target mRNA sequences. FISH-TAMB’s target 
specificity and sensitivity was demonstrated by labeling mcrA mRNA expressed in 
Methanosarcina barkeri, ANME-2, and Escherichia coli containing a plasmid with a 
partial M. barkeri mcrA gene (E. coli mcrA+). Growth curve analysis supported sustained 
cellular viability following FISH-TAMB treatment. FISH-TAMB is capable of labeling 
single planktonic cells and cells in microbial aggregates in real time, supporting its 
application in investigating syntrophically activated metabolisms between physically 
associated microorganisms. FISH-TAMB can be applied to target mRNA of any 
functional gene of interest and does not require prior knowledge of 16S ribosomal RNA-
based taxonomy. Nonetheless, we demonstrated that FISH-TAMB is compatible with 
16S rRNA FISH, enabling simultaneous metabolic and taxonomic identification of 
microbes active in biogeochemical cycling. Our results demonstrate FISH-TAMB as a 
versatile addition to the molecular ecologist’s toolkit, with potential widespread 
application in the field of environmental microbiology. 
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2.2 INTRODUCTION  

The studies of ribosomal RNA (rRNA) and, more recently, shotgun sequencing of 

genomic DNA have vastly expanded our knowledge of microbial diversity and metabolic 

potential in natural communities, including uncultivated microbial species of the rare 

biosphere and microbial dark matter (MDM) (Sogin et al., 2006; Rinke et al., 2013; 

Spang et al., 2015; Vanwonterghem et al., 2016; Seitz et al., 2016; Zaremba-

Niedzwiedzka et al., 2017; Lazar et al., 2017). Shotgun sequencing of mRNA from 

environmental samples, metatranscriptomics, has revealed the in situ metabolic activity 

of microbial ecosystems (Poretsky et al., 2005; Poretsky et al., 2009; He et al., 2010; 

Gifford et al., 2011; Hollibaugh et al., 2011; He et al., 2012; Lau et al., 2016; Lau et al., 

2018). Despite these advances or because of them, the need to enrich, isolate and 

characterize the physiology of rare biosphere and MDM species has increased. While 

high-throughput sequencing is an excellent means to identify novel lineages with 

divergent functional genes (Evans et al., 2015; Harris et al., 2018; Borrel et al., 2019; 

McKay et al., 2019; Wang et al., 2019; Evans et al., 2019; Boyd et al., 2019), 

enrichments and labeling experiments on living biomass are ultimately necessary to 

assess physiological characteristics – such as substrate affinity (Möller and van Heerden, 

2006; Laso-Pérez et al., 2016; Pratscher et al., 2018; Chen et al., 2019) and enzymatic 

directionality (Fuseler, 1996; Thorup et al., 2017) – which cannot be inferred from -omics 

efforts alone.  

 Visualization and sorting of these species can be performed through fluorescence 

in situ hybridization (FISH), which involves the use of fluorescent oligonucleotide linear 

probes targeting the 16S rRNA gene (DeLong et al., 1989; Amann et al., 1990) or 
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messenger RNA (mRNA) (Pernthaler and Amann, 2004; Kalyuzhnaya et al., 2006; Jen et 

al., 2007; Mota et al., 2012; Rosenthal et al., 2013; Nikolakakis et al., 2015; Choi et al., 

2016; DePas et al., 2016). These approaches, however, typically require fixed (i.e. dead) 

cells, rendering impossible the capture of labeled rare taxa for cultivation-based research. 

Fixation-free 16S rRNA FISH has been applied on environmental samples for subsequent 

enrichment (Yilmaz et al., 2010), but to our knowledge a fixation-free FISH protocol 

targeting mRNA has not yet been reported. Imaging and sorting of translationally active 

cells from environmental samples has been achieved through the use of bioorthogonal 

noncanonical amino acid tagging (BONCAT) (Hatzenpichler et al., 2016) but this 

approach has to be combined with fixation-free techniques to target specific taxonomic or 

functional clades for enrichment. It would be advantageous, therefore, to use a fixation-

free fluorescent labeling technique that identifies metabolically active cells based on the 

transcription of target functional genes to enable subsequent sorting and enrichment.  

We describe here the development of fluorescent in situ hybridization of 

transcript-annealing molecular beacons (FISH-TAMB) to label mRNA of a targeted 

functional gene in living, transcriptionally active prokaryotic cells without the need for 

cellular fixation. Molecular beacons (MBs), with a hairpin oligonucleotide sequence 

outfitted with a fluorophore and a fluorescence quencher (Tyagi and Kramer, 1996) were 

selected to target the mRNA of bacteria and archaea, as they result in a higher signal-to-

background noise ratio than linear probes and have also been successfully applied to 

detect intracellular mRNA of living eukaryotic cells (Sokol et al., 1998; Nitin et al., 2004; 

Santangelo et al., 2006; Bao et al., 2009; Larsson et al., 2012). In the unbound state, 

complementary bases on the 5’ and 3’ ends of MBs self-anneal to form a stem structure, 
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which results in fluorescence quenching. Recognition of a target sequence results in MB 

linearization for subsequent hybridization (Figure 2.1). Thus, the fluorophore is no longer 

in physical proximity to the quencher, resulting in emission of a known wavelength at a 

level differentiable from the background fluorescence due to autofluorescence and 

unbound MBs (Goel et al., 2005). In order to deliver the MBs into prokaryotic cells 

without causing cell death, cell-penetrating peptides are used as the cargo-delivering 

vehicle, as they have been shown to successfully deliver DNA and nanoparticles into 

living cyanobacteria with negligible toxicity (Liu et al., 2013a; Liu et al., 2013b), though 

the mechanism by which cellular uptake occurs is presently not fully understood.  

In this study, we demonstrate the usage of FISH-TAMB by applying the 

methodology to visualize in vivo intracellular mRNA expressed by the alpha subunit of 

methyl-coenzyme M reductase (mcrA), a marker gene of methanogens (Lueders et al., 

2001; Luton et al., 2002; Evans et al., 2015; Vanwonterghem et al., 2016) and the 

uncultivated anaerobic methanotrophic archaea (ANMEs) (Hinrichs et al., 1999; Boetius 

et al., 2000; Orphan et al., 2001; Orphan et al., 2002; Hallam et al., 2003). Following the 

formation of FISH-TAMBs via non-covalent hybridization of MBs to R9 cell-penetrating 

peptides, we applied the FISH-TAMB methodology to target mcrA mRNA in cells from 

three scenarios: (i) a methanogen grown in pure culture (Methanosarcina barkeri), (ii) 

ANMEs enriched from Precambrian shield subsurface fracture fluid  (BE326 BH2-Conc) 

(Lau et al., 2016; Simkus et al., 2016; Magnabosco et al., 2018), and (iii) Escherichia coli 

transformed with partial mcrA gene derived from M. barkeri (E. coli mcrA+), which is 

used as a proxy for potential inter-domain horizontal gene transfer.  Cells were visualized 

and enumerated using spinning disk confocal microscopy and flow cytometry (FC). To 
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fluorescently identify active ANMEs, we followed FISH-TAMB treatment of BE326 

BH2-Conc with standard 16S rRNA FISH protocol, and observed microbial consortia 

were compared with taxonomic information obtained from the associated metagenome. 

Ability of pure cultures to grow post FISH-TAMB treatment was assessed by growth 

curve analysis.  
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Figure 2.1. FISH-TAMB conformation and hybridization to encountered messenger 
RNAs. (A) An oligomer comprised of a 24 base-long complementary mcrA mRNA 
sequence is flanked by 5 reverse complement nucleotides to form a molecular beacon 
(MB) loop and stem structure. Cell-penetrating peptides (CPPs) comprising 9 arginine 
sequences (R9) are non-covalently bound to the MB sequence and are responsible for 
its delivery across the cell wall and plasma membrane. (B) Fluorescence of Cy5 
fluorophore covalently bound to the 5’ end of the MB sequence remains quenched by 
BHQ3 bound to the 3’ terminus until the MB hybridizes to a target transcript sequence. 
Hybridization results in the linearization of the MB, subsequently unquenching Cy5 
from BHQ3, allowing the fluorophore’s emission upon excitation by a source in the red 
bandwidth of the visible light spectrum. (C) If the MB encounters an mRNA transcript 
that is not its intended target, it will retain its hairpin conformation and fluorescence of 
Cy5 will remain quenched by BHQ3. Images not to scale. Mechanism of CPP delivery 
across the cell wall and plasma membrane remains under debate. Intracellular fate of 
R9 is unknown. 
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2.3 MATERIALS AND METHODS 

2.3.1 Microbial sampling of borehole BE326 BH2. Fracture fluid was collected 

in June 2016 following established sampling procedures (Lau et al., 2014; Magnabosco et 

al., 2014) from a horizontal borehole located 1.34 km below land surface on the 26th level 

of shaft 3 of the Beatrix Gold Mine in South Africa (BE326 BH2) (S 28.235º, E 26.795º). 

Due to a low in situ cell concentration (Simkus et al., 2016) of 103 to 104 cells ml-1, the 

fracture fluid was first filtered using a 0.2 µm hollow fiber MediaKap®-10 filter 

(Spectrum Labs, New Brunswick, NJ USA) and then back-flushed with fracture fluid into 

sterile, N2-sparged 160-ml borosilicate serum vials to obtain a final concentration of ~107 

cells ml-1. Dissolved gas samples were collected along with field measurements of certain 

environmental parameters (SI Materials & Methods, results in Table 2S.1).  

 

2.3.2 Enrichments of methanogens and anaerobic methanotrophs (ANMEs). 

Axenic Methanosarcina barkeri str. Schnellen cultures (ATCC® 43569™) were enriched 

for hydrogenotrophic methanogenesis using modified DSMZ medium 120a (Bryant and 

Boone, 1987).  The medium was titrated with anaerobic 1 M NaOH to pH 7.2. Growth at 

37˚C was monitored via optical density measurements taken at 550 nm [OD550] 

(Anderson et al., 2012) using a Hach DR/2010 Spectrophotometer (Hach Company, 

Loveland, CO USA. Methane production was observed using a gas chromatograph 

equipped with a flame ionization detector (FID) (Peak Performer 1 series, Peak 

Laboratories, Mountain View, CA USA).  

The anaerobic oxidation of methane coupled to sulfate reduction (S-AOM) was 

enriched in BE326 BH2-Conc samples by inoculating fracture fluid into a modified 
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anaerobic artificial seawater medium containing SO4
2- as the sole electron acceptor 

(Widdel and Bak, 1992; Holler et al., 2011). The medium was pH-adjusted to pH 8.2 and 

contained 10 mM SO4
2- to reflect the in-situ conditions observed at BE326 BH2 (Table 

2S.1). AOM activity was determined via stable isotopic monitoring of 13CH4 tracer 

oxidized to 13CO2 using a Picarro G2101-I cavity ringdown spectrometer (Picarro, Inc. 

Santa Clara, CA USA). Sulfate reduction to sulfide was monitored using a Dionex IC25 

ion chromatograph coupled to an MSQ-quadruple mass spectrometer (Thermo Scientific, 

Waltham, MA USA). Media recipes and details of enrichment maintenance are described 

in SI Materials & Methods. 

Total DNA isolation was performed on the BE326 BH2-Conc AOM enrichment 

for metagenomic sequencing using a Qiagen DNeasy PowerSoil Kit following the 

manufacturer’s protocol (QIAGEN, Hilden, Germany). Isolated DNA was quantified 

using a Qubit high sensitivity dsDNA assay kit and a Qubit 2.0 analyzer according to the 

manufacturer’s instructions (ThermoFisher Scientific, Waltham, MA USA), and DNA 

was kept frozen at -20˚C for further processing. Metagenomic libraries were prepared 

using a PrepX DNA library kit and an automated Apollo 324 system (WaferGen 

Biosystems, Inc., Fremont CA USA). Paired end (2 x 100 nt) DNA sequencing was 

performed on a HiSeq 2000 platform (Illumina, Inc., San Diego, CA USA) located at the 

Marine Biological Laboratory in Woods Hole, MA USA. Quality filtering of sequenced 

reads and subsequent metagenome assembly and annotation was performed as previously 

described (Harris et al., 2018). A total of 35,669,635 raw paired end reads were processed 

using fastp v.0.12.6 (Chen et al., 2018) to remove reads matching the Illumina universal 

adapter sequence, that were shorter than 50 nt, had Phred quality scores < 30, and 
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contained Ns as bases. The resulting 32,139,898 quality-filtered paired end reads were 

assembled using SPAdes v.3.11.0 (-meta option) (Bankevich et al., 2012). Taxonomic 

diversity of the assembled metagenome was assessed using Kaiju v.1.6.2 (Menzel et al., 

2016) against the nr_euk database using greedy mode (-a greedy), allowing 5 mismatches 

(-e 5) and a maximum e-value threshold of 5 × 10-5 (-E 0.00005). Gene predictions were 

made from assembled scaffolds of length > 200 bp using Prodigal v2.6.3 (-p meta option)  

(Hyatt et al., 2010). Resulting open reading frames (ORFs) were annotated using 

BLASTp against the nr database (-max_target_seqs 10). The consensus protein identity 

was determined as the most common assignment amongst the top 10 collected hits with 

an e-value < 10-10. 

 

2.3.3 E. coli expression clones. E. coli JM109 expression clones were grown at 

37˚C on an orbital shaker at 150 rpm in a suspension of Luria broth containing 0.05 mg 

ml-1 ampicillin. Growth was monitored via optical density at 600 nm [OD600] using a 

Beckman DU® 530 Life Science UV/Vis Spectrophotometer (Beckman Coulter®, 

Indianapolis, IN USA). Transcription of the lac operon containing either target lacZ! or 

mcrA genes was induced at OD600 ~ 0.6 by adding 1 mM Isopropyl β-D-1-

thiogalactopyranoside (IPTG). IPTG-induced cultures were incubated at 37˚C and 150 

rpm for 4 hours prior to treatment with FISH-TAMB. 

E. coli mcrA+ was periodically monitored for gene loss by plating liquid culture 

aliquots onto Luria broth cloning plates with 0.05 mg ml-1 ampicillin, 0.05 mg ml-1 IPTG, 

and 0.08 mg X-gal (LB/AIX) for blue/white screening (SI Materials & Methods). If 

mcrA was absent from the plasmid, the cloning procedure was repeated.  
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Details of transformation procedures, including isolation and purification of M. 

barkeri mcrA, can be found in SI Materials and Methods. 

 

2.3.4 Molecular beacon (MB) design. The MBs in this study each comprised a 

GC-rich 5-base pair stem and 24-mer nucleotide probe sequence. The MB targeting 

lacZα mRNA was designed to overlap the insertion site sequence of the pGEM®-T Easy 

Vector and have a similar melting temperature and GC content as the MB targeting mcrA 

mRNA. The mcrA MB sequence was modified from the mcrA-rev reverse primer (5’-

CGTTCATBGCGTAGTTVGGRTAGT-3’) commonly used in diversity studies of 

methanogens and ANMEs belonging to phylum Euryarchaeota (Steinberg and Regan, 

2009). Both lacZα and mcrA MBs were flanked on the 5’ end by a covalently bound Cy5 

fluorophore (excitation peak at 640 nm, and emission peak at 665 nm) and on the 3' end 

by a BHQ3 Black Hole Quencher® (MilliporeSigma, St. Louis, MO USA). MB 

sequences can be found in Table 2S.2. 

As the additional bases on the stem structure (as indicated by small letters in the 

MB sequences) may affect the specificity of the MB to target transcripts, the similarity 

between MB sequences and their respective targets was assessed in silico using BLAST 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi) against the nucleotide database. In vitro 

hybridization was done to assess potential non-specific hybridization fluorescence and 

melting curve analysis was done to determine the optimal incubation temperature for 

positive MB-target hybridization (SI Materials & Methods, SI Results & Discussion).  
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2.3.5 Formation of FISH-TAMB probes. A cell-penetrating peptide comprised of 

nine arginine residues (R9) was selected as a carrier to deliver MBs across cell walls and 

plasma membranes, as it has been demonstrated to penetrate cyanobacterial walls and 

membranes without harmful effects (Liu et al., 2013a).  R9 was mixed with MB in 1× 

Dulbecco’s phosphate buffered saline solution (DPBS) (Corning Mediatech, Manassas, 

VA USA) in an FISH-TAMB molar ratio of 20:1.  Reactions were incubated for 30 

minutes at 37˚C in a C1000 Touch™ Thermal Cycler (Bio-Rad Laboratories, Inc., Irvine, 

CA USA) to allow for the complexation of all free-floating MBs in solution. FISH-

TAMB probes were subsequently stored in the dark at -20˚C until use. Procedures and 

data determining optimal component ratios for FISH-TAMB probe formation are found 

in SI Materials & Methods, SI Results & Discussion, and Table 2S.3, respectively.  

 

2.3.6 Growth assessment of FISH-TAMB treated cultures. E. coli mcrA+, E. coli  

lacZα+, and M. barkeri (~106 cells) were incubated with 1 µM FISH-TAMB probes as 

described and subsequently inoculated into Luria broth containing 0.05 mg ml-1 

ampicillin (LB/A) (for E. coli) and DSMZ 120a media (for M. barkeri). Growth curves 

were obtained by measuring optical density at 600 nm for E. coli using a Beckman DU® 

530 Life Science UV/Vis Spectrophotometer (Beckman Coulter®, Indianapolis, IN USA) 

and at 550 nm for M. barkeri using a Hach DR/2010 Spectrophotometer (Hach Company, 

Loveland, CO USA). Growth rates for FISH-TAMB treated cultures were compared to 

those obtained by control cultures (i.e. not treated with FISH-TAMB).  
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 2.3.7 FISH-TAMB and 16S rRNA FISH. All pure cultures and enrichments 

(~106 cells) were incubated in the dark for 15 minutes at 37˚C in 100-µl reactions 

containing 1 µM FISH-TAMB probes in 1× DPBS solution. Reactions for M. barkeri and 

BE326 BH2-Conc enrichments were prepared using degassed 1× DPBS in an anaerobic 

glove bag (Coy Laboratory Products, Grass Lake, MI USA) to maintain cell activity in 

the absence of atmospheric O2. FISH-TAMB treated cells of known taxonomy (i.e. pure 

cultures) were immediately analyzed in downstream applications (e.g. spinning disk 

confocal microscopy, flow cytometry) to visualize labeled mRNA, while cells from 

BE326 BH2-Conc AOM enrichments were fixed for subsequent taxonomic identification 

via 16S rRNA FISH. Briefly, FISH-TAMB-treated cells from AOM enrichments were 

washed once in 1× PBS and centrifuged at 2,000 × g for 5 minutes. The supernatant was 

pipetted off and cells were resuspended in a 1:1 mixture of chilled absolute ethanol and 

1× DPBS and stored overnight at -20˚C before being subsequently filtered onto 0.2 µm 

polycarbonate membrane filters (Whatman International Ltd., Maidstone, UK). Filters 

were washed twice with filter-sterilized distilled MilliQ water and chilled absolute 

ethanol then allowed to air dry before being stored at -20˚C until 16S rRNA FISH 

treatment.  

 Sequences belonging to ANME-2 methanotrophs previously identified by 

metatranscriptomics at BE326 BH2 (Lau et al., 2016) were targeted by 16S rRNA FISH 

in BE326 BH2-Conc AOM enrichments. For 16S rRNA FISH, fixed samples were 

hybridized with 50 ng µl-1 dual-labeled ANME-2-targeted oligonucleotide probes 

(Boetius et al., 2000; Orphan et al., 2001; Hatzenpichler et al., 2016) with Atto 565 

fluorophores (Biomers.net, Ulmer, Germany; ATTO-TEC GmbH, Siegen, Germany). 
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Hybridizations were performed at 46˚C for 2 hours and subsequently washed at 48˚C for 

15 minutes and counterstained with 1 µM 4,6-diaminidino-2-phynylindole (DAPI) 

following an established protocol (Glöckner et al., 1996). Hybridization stringency of 

probes to targets was verified using varied formamide concentrations (0%, 10%, 20%, 

30%, and 40%) prior to application to BE326 BH2-Conc AOM enrichments. Each probe 

set was hybridized in a technical duplicate and compared to unfixed, FISH-TAMB-

labeled and unfixed, unlabeled control samples. 16S rRNA FISH probe sequences can be 

found in Table 2S.2.  

 

2.3.8 Spinning disk confocal microscopy. M. barkeri and BE326 BH2-Conc cells 

were imaged using a Nikon Ti-E with Perfect Focus System (PFS) inverted microscope 

(Nikon Instruments, Melville, NY USA) equipped with a 100× Plan Apo NA 1.45 oil 

objective lens, Yokogawa CSU-21 spinning disk, Orca Flash camera (Hamamatsu, 

Bridgewater, NJ USA). The 405-nm laser channel was used to excite F420 

autofluorescence in unfixed M. barkeri, M. barkeri and fixed BE326 BH2-Conc cells that 

were labeled with 1 µM DAPI. Unfixed E. coli mcrA+ and E. coli lacZα+ expression 

clones were stained with 1 µM Hoechst 33342 (Thermo Fisher Scientific, Waltham, MA 

USA), and fluorescent cells were detected on the 461-nm emission filter. Atto 565 

coinciding with 16S rRNA FISH labeling of ANME-2 cells was excited at 561 nm and 

detected at 590 nm. Excitation and emission of the Cy5 fluorophore in FISH-TAMB 

probes were set to 647 nm and 670 nm, respectively. To minimize focus drift, samples 

were maintained inside a humidity controlled environmental chamber at 25˚C under a 

100% CO2 atmosphere during imaging.  Unfixed FISH-TAMB labeled cells from the 



 

 

Chapter 2: 
FISH-TAMB for fixation-free mRNA labeling 

37 

BE326 BH2-Conc enrichment were imaged every minute for 14 hours to assess Cy5 

fluorescence lifetime, with multiple positions recorded simultaneously using an MS-2000 

motorized stage (Applied Scientific Instrumentation, Eugene, OR USA).  

M. barkeri cells exposed to atmospheric O2 prior to imaging were transferred in 1-

ml aliquots (~108 cells) into sterile 1.5 ml Eppendorf tubes and incubated in a heat block 

at 37˚C overnight on an orbital shaker at 150 rpm. Exposure to O2 was verified via media 

color change from clear (anaerobic) to bright pink (oxidized) as indicated by O2 sensitive 

resazurin in solution. FISH-TAMB treatment and imaging parameters were as previously 

described. 

Three-dimensional projections were generated from z-stacks to localize mRNA 

labeling in E. coli mcrA+ and E. coli lacZ!+ expression clones. FISH-TAMB-treated cells 

were stained with 1 µM Hoechst 33342 and imaged using a Bruker Opterra II swept-field 

confocal microscope (Bruker Scientific Instruments, Billerica, MA USA) equipped with a 

multiphoton super-resolution Luxendo light-sheet (Luxendo GmbH, Heidelberg, 

Germany). Hoechst 33342 fluorescence was excited with a 405 nm laser line and 

emission was detected at 461 nm. Cy5 fluorescence from FISH-TAMBs was excited at 

640 nm and detected at 665 nm.  

Composite micrographs were generated from raw microscopy images using 

ImageJ v. 2.0.0-rc-69/1.52n. Images were enhanced to show contrast using Adobe 

Photoshop Elements 15 (Adobe Inc., San Jose, CA USA).  

 

2.3.9 Flow cytometry. For detection of unfixed FISH-TAMB labeled cells via 

flow cytometry, ~106 cells were incubated for 15 minutes at 37˚C in 100-µl reaction 
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mixtures containing 1 µM FISH-TAMBs, 1× DPBS solution. Following incubation, 

reaction mixtures were diluted in 0.9 ml 1× DPBS solution containing ~106 ml-1 

Fluoresbrite™ plain red 0.5 µm microspheres (Polysciences, Inc., Warrington, PA USA). 

Flow cytometry was performed on a BD LSRII Multi-Laser Analyzer (BD Biosciences, 

San Jose, CA USA) at the Princeton University Flow Cytometry Resource Facility. Data 

were acquired for 120 seconds for each sample at 8 µl min-1 average flow rate using four 

independent laser channels at default wattage settings (355 nm at 30 mW, 405 nm at 50 

mW, 488 nm at 20 mW, and 640 nm at 40 mW). Forward and side-scattered light were 

set to logarithmic scale and used to trigger events. The system was flushed with 10% 

(v/v) bleach solution for 1 minute before analysis and between samples to minimize the 

potential for cross-contamination. 

Fluorescent microsphere counts were used to calculate the volume of fluids being 

analyzed to determine cell concentrations. For all samples, events gated as cell-sized 

objects and FISH-TAMB-labeled cells in 1× DPBS + FISH-TAMB probes + growth 

medium (see SI Materials & Methods for cell population gating parameters) were 

subtracted from final counts collected for each cell type. Statistical analysis of observed 

differences in FISH-TAMB labeling between samples and their respective controls was 

performed using a Student t-test (StatPlus:mac LE software, AnalystSoft, Inc., Walnut, 

CA USA).  

 

2.4 RESULTS AND DISCUSSION  

2.4.1 FISH-TAMB response to metabolic activity of methanogens. Coupling 

FISH-TAMB with spinning disk confocal microscopy, we observed significant variability 
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in FISH-TAMB fluorescence level at different growth stages and after O2 exposure 

(Figure 2.2). During exponential growth of M. barkeri, all observable cells detected from 

F420 autofluorescence were also co-labeled with the FISH-TAMB Cy5 fluorophore 

(Figure 2.2A), demonstrating successful delivery of MBs across archaeal cell walls and 

membranes as was observed for bacterial cell wall and membranes. (Figure 2.2A). By 

comparison, only ~20% of enumerable M. barkeri in stationary phase were also FISH-

TAMB labeled, and on average appeared to show lower Cy5 fluorescence intensity 

relative to exponential phase cells (Figure 2.2B). Following overnight exposure to 

atmospheric O2, fewer than 1% of observed cells showed FISH-TAMB-associated 

fluorescence (Figure 2.2C). Both the decrease in the number of labeled cells and 

observed drops in Cy5 fluorescence intensity are consistent with anticipated diminished 

methanogenesis rates typical of stationary phase (Hutten et al., 1980) or prolonged O2 

exposure (Fetzer et al., 1993). This suggests that FISH-TAMB counts and fluorescence 

intensity are affected by transcription rates, although further experiments will be 

necessary to test this hypothesis and quantify such relationships.  
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Figure 2.2. FISH-TAMB sensitivity to mcrA transcription in Methanosarcina barkeri 
during exponential phase (A), stationary phase (B) and following overnight exposure to 
air (C). F420: F420 autofluorescence (excitation 405 nm, emission 461 nm). FT: Cy5 
fluorescence from FISH-TAMB labeling (excitation 647 nm, emission 670 nm). 
F420+FT: Composite image of F420 and FT micrographs. Scale bar 10 µm.  
 

 

2.4.2 FISH-TAMB identification of active ANMEs within microbial consortia. 

To establish the efficacy of FISH-TAMB as a method for tracking transcriptional activity 

of uncultivated lineages, we coupled it to 16S rRNA FISH and confocal microscopy to 

identify ANME-2 Archaea actively performing anaerobic oxidation of methane (AOM) 
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in microcosm incubations of a fracture water sample from a 1.34 km deep borehole in 

South Africa (BE326 BH2-Conc). Following a pre-incubation period of 50 days with 

13CH4 and SO4
2--, microcosm aliquots were first treated with FISH-TAMB probes 

targeting mcrA mRNA to target cells actively oxidizing CH4. The same samples were 

subsequently fixed with EtOH:PBS, labeled with 16S rRNA FISH probes targeting 

ANME-2, and counter-stained with DAPI. Under these conditions, we observed ANME-

2-labeled cells were also co-labeled by FISH-TAMB. ANME-2 cells were situated in 

consortia with DAPI-only labeled cells (Figure 2.3), which were likely sulfate-reducing 

bacteria (SRB) living in metabolic syntrophy (Lau et al., 2016; Magnabosco et al., 2018). 

 

 

Figure 2.3. Co-labeling of active ANME-2 cells in microbial consortia by FISH-
TAMB and 16S rRNA FISH. D: DAPI (excitation 405 nm, emission 461 nm). FT: Cy5 
fluorescence from FISH-TAMB labeling (excitation 647 nm, emission 670 nm). 16S: 
Atto 565 fluorescence from 16S rRNA FISH labeling (excitation 561 nm, emission 590 
nm). D+FT+16S: Composite of D, FT, and 16S micrographs. Scale bar 10 µm. 

D FT 16S D+FT D+FT+16S

D FT D+FT+16S

D FT D+FT+16S
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Using Kaiju for taxonomic classification, we confirmed the presence of two 

ANME-2d OTUs in the associated metagenome, collectively comprising 1% relative 

abundance amongst the Archaea and 0.03% abundance relative to the entire microbial 

community. Similarly, although we did not target ANME-2 SRB partners in our 16S 

rRNA FISH survey, we did identify sequences allied to the 

Desulfosarcina/Desulfococcus and Desulfobulbus clades (0.08% and 0.05% relative 

abundance, respectively). We also identified significant enrichment of Desulfotomaculum 

(1% relative abundance), which have been identified in ANME-2 anaerobic sludge 

enrichments (Li et al., 2019). Collectively, these results support the application of FISH-

TAMB to identify low abundance microbial dark matter based on its transcriptional 

activity. Indeed, FISH-TAMB, when coupled to 16S rRNA FISH, demonstrated the first 

microscopic evidence of AOM microbial consortia from the continental deep biosphere.  

 

2.4.3 Temporal monitoring of FISH-TAMB labeled cells from BE326 BH2-

Conc. Using spinning disk photomicroscopy, we monitored intensity and duration of Cy5 

fluorescence in unfixed FISH-TAMB labeled cells from BE326 BH2-Conc. Various cell 

morphologies were observed over a 14-hour monitoring period, including single 

planktonic cells (Figure 2S.3A), paired cells (Figure 2S.3B-C), and cell aggregates 

(Figure 2S.3D). Fluorescence intensity of all cell morphologies was significantly reduced 

within 2 hours of hybridization. Interestingly, however, single planktonic cells 

maintained discernable fluorescence much longer than labeled cells in aggregates with 

extracellular polymeric substances (EPS) – up to 6 hours post-FISH-TAMB treatment 

(Figure 2S.3A). This observable difference is likely correlated to the phenomenon that 
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microorganisms living in aggregates exhibit markedly different patterns of gene 

expression compared to free-living cells (even those of the same species), focusing 

significant transcriptional effort in the repair and maintenance of the EPS matrix 

(Rumbo-Feal et al., 2013; Nakamura et al., 2016; Berlanga and Guerrero, 2016; Guilhen 

et al., 2016). We speculate that the gradual decrease in Cy5 fluorescence intensity 

observed in microbial aggregates reflects a regulatory switch typical of biofilm “group 

behavior” under stress (Kostakioti et al., 2013), though metatranscriptomics would be 

necessary to confirm this hypothesis.  

Notably, at the beginning of the imaging experiment, we captured a duplet of cells 

in which one cell of the pair was brightly labeled and the other appeared unlabeled 

(Figure 2.4). Within 20 minutes, we were able to detect an increase in Cy5 fluorescence 

in the initially unlabeled cell (Figure 2.4B). Over the course of the next two hours it 

became unambiguously brighter and distinct from its fluorescent partner. Interestingly, 

the appearance of a labeled cell 20 minutes into observation coincides with the mcrA 

mRNA half-life of ~25 ± 8 minutes reported in Methanosarcina acetivorans (Peterson et 

al., 2016), suggesting labeling of an mcrA mRNA which was transcribed after the FISH-

TAMB incubation took place. It is unlikely that focus drift artificially generated the 

fluorescence signal by bringing an out-of-focus cell into view because brightfield images 

taken simultaneously at each time point show the second cell in focus for the duration of 

the imaging experiment (Figure 2.4A), confirming the 300 nm positional accuracy of the 

stage (Stehbens et al., 2012). We therefore conclude that we likely captured in vivo FISH-

TAMB hybridization to target transcripts.  
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Figure 2.4. In situ monitoring of mRNA captures apparent real-time labeling by FISH-
TAMB. BE326 BH2-PC enrichments were incubated anaerobically with 1 µM FISH-
TAMBs targeting mcrA mRNA and subsequently imaged via spinning disk 
photomicroscopy. (A) Composite brightfield and Cy5 channel shows a cell duplet in 
focus over the duration of imaging. (B) Cy5 channel distinguishes a gradual increase in 
fluorescence intensity of an initially unlabeled cell ~20 minutes into imaging. Samples 
were analyzed at 100´ magnification under a 100% CO2 atmosphere and imaged every 
minute for 14 hours (647/670 nm excitation/emission). Micrographs show first 5 hours 
of imaging. Scale bar 5 µm.  

 

2.4.4 Target specificity in E. coli expression clones as a proxy for inter-domain 

horizontal gene transfer. E. coli JM109 competent cells were transformed with pGEM®-

T Easy Vectors with intact beta-galactosidase-encoding insertion sites (E. coli lacZα+). 

To assess partial non-specific hybridization of lacZα-targeting FISH-TAMBs, a second 

expression clone line was generated by ligating mcrA genes PCR-amplified directly from 

M. barkeri (E. coli mcrA+). E. coli mcrA+ was used to test FISH-TAMB’s ability to 

permeate bacterial membranes and also functioned as a proxy for the hypothetical 

scenario of bacterial cells obtaining mcrA via horizontal gene transfer from archaea in the 

environment.    

Responsiveness of FISH-TAMB to transcriptional activity was assessed by 

comparing E. coli mcrA+ cultures whose mRNA expression was turned on and off when 

respectively grown in the presence or absence of lac operon inducer isopropyl β-D-1-
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thiogalactopyranoside (IPTG). For IPTG-induced E. coli mcrA+ populations, flow 

cytometry data showed 91.73 ± 6.03% of observed cells were labeled by FISH-TAMB 

(Figure 2.5D). By comparison, only 0.03 ± 0.06% of uninduced E. coli mcrA+ cells were 

labeled by FISH-TAMB (Figure 2.5B), which was not statistically different from the 

FISH-TAMB-treated control containing untransformed E. coli JM109 (Student t-test, t = 

1.6, p = 0.25).  The addition of IPTG had no significant effect on Cy5 fluorescence in 

control incubations that were not treated with FISH-TAMB (Figure 2.5A, C). IPTG-

induced E. coli mcrA+ yielded insignificant labeling (0.05% ± 0.03%) when treated with 

FISH-TAMB targeting the lacZ! insertion site (Figure 2.5E) (Student t-test, t = 2.5, p = 

0.24). These results indicate that FISH-TAMB detects transcription of targeted cells in 

exponential phase. 

The E. coli results also demonstrate that 1) R9 cell-penetrating peptides are as 

successful delivering MBs across Gram-negative bacteria cell walls and membranes, and 

2) FISH-TAMB effectively detects transcription of artificially horizontally transferred 

genes. Provided that the FISH-TAMB targeting site is preserved after horizontal gene 

transfer events, it is reasonable to anticipate that FISH-TAMB would enable the detection 

of lateral gene transfer that happened across cells of different cell wall and membrane 

composition. 
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Figure 2.5. Flow cytometry data of FISH-TAMB targeting messenger RNA in E. coli grown 
in the presence (induced) or absence (uninduced) of IPTG - Isopropyl β-D-1-
thiogalactopyranoside – which triggers the transcription of the lac operon containing this 
gene. FISH-TAMB targeting mcrA in induced E. coli mcrA+ is indicated by the population 
gated in red. Cy5 was excited at 640 nm and emitted fluorescence collected via 670/30 nm 
bandpass filter. (A) Uninduced E. coli mcrA+ control (no FISH-TAMB treatment). (B) 
FISH-TAMB targeting mcrA mRNA + Uninduced E. coli mcrA+. (C) IPTG-induced E. coli 
mcrA+ control (no FISH-TAMB treatment). (D) FISH-TAMB targeting mcrA mRNA+ 
IPTG-induced E. coli mcrA+. (E) FISH-TAMB targeting lacZα mRNA + IPTG-induced E. 
coli mcrA+.  (F) Fluorescence microscopy of IPTG-induced E. coli mcrA+ treated with 
FISH-TAMB targeting mcrA mRNA. H: Hoechst-33342 (excitation 405 nm, emission 461 
nm), FT: Cy5 fluorescence from FISH-TAMB labeling (excitation 640 nm, emission 670 
nm). H+FT: composite of H and FT micrographs. Scale bar 10 µm.  

 2.5.5 Sustained growth of FISH-TAMB-treated cultures. To illustrate if FISH-

TAMB treated cells remained culturable, we monitored the growth of E. coli mcrA+, E. 
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coli lacZ!+, and M. barkeri incubated with and without FISH-TAMBs. Results showed 

that the applied FISH-TAMB dosage (on average 6 × 10-6 pmol per cell) had no 

inhibitory effect on the growth rate of these pure cultures (Figure 2S.6). Both FISH-

TAMB-treated and untreated E. coli exhibited similar growth rates: µcontrol of E. coli 

mcrA+ = 1.04 ± 0.16 h-1, µFISH-TAMB = 0.83 ± 0.06  h-1, whereas E. coli lacZ!+ grew at 

µcontrol = 1.12 ± 0.25  h-1, µFISH-TAMB = 1.00 ± 0.32 h-1. (Figure 2S.6) Doubling times for 

both control and FISH-TAMB-treated M. barkeri were ~ 21 hours (µcontrol = 0.03 ± 0.01 

h-1 and µFISH-TAMB = 0.03 ± 0.01 h-1 (Figure 2S.6B), which are consistent with previous 

reports of hydrogenotrophic M. barkeri growth rates (Maestrojuan and Boone, 1991). 

Further investigations should be conducted to determine whether other microbial species 

have different tolerances to the per-cell concentration of FISH-TAMBs, i.e. different 

“optimal dosages” of FISH-TAMB. 

 

2.5 CONCLUSIONS 

2.5.1 Implications of FISH-TAMB for microbial ecology. Cellular fixation with 

paraformaldehyde and/or ethanol is a traditional step in the FISH protocol that stabilizes 

cell integrity for efficient membrane permeabilization, but at the expense of DNA-protein 

crosslinking and potential downstream sequencing bias (Amann et al., 1995; Yilmaz et 

al., 2010). By targeting unfixed cells, FISH-TAMB can identify cells without nucleic acid 

modification. Coupled with established FISH techniques, we have demonstrated that 

FISH-TAMB can identify transcriptionally active cells from mixed microbial 

communities, including low abundance and slow growing populations, based on the 

expression of a targeted functional gene. The identification of mcrA transcription in 
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ANMEs within larger microbial consortia offers opportunities to further investigate in 

situ syntrophic interactions between target cells and their physically associated partners. 

ANME/SRB aggregates are taxonomically well described, but the mechanisms by which 

they exchange electrons remain under debate (Hoehler et al., 1994; Valentine and 

Reeburgh, 2000; Sørensen et al., 2001; Moran et al., 2008; Milucka et al., 2012; 

McGlynn et al., 2015). By coupling FISH-TAMB to 16S rRNA FISH we have 

successfully and sensitively visualized intracellular mRNA amongst significantly more 

abundant rRNA, using advanced fluorescence microscopy techniques that are precise 

enough to capture FISH-TAMB hybridization in real time. Future applications in tandem 

with nanoscale secondary ion mass spectroscopy (nanoSIMS) and electron microscopy 

may further resolve the nature of direct electron transfer between ANMEs and their 

syntrophic partners.  

Continued development of FISH-TAMB is necessary to understand the limits of 

its application in other systems (e.g. temperature, salinity, and pH extremes; sensitivity to 

spore forming, gram-positive Bacteria; double-membraned Archaea (Rachel et al., 2002; 

Näther and Rachel, 2004; Comolli et al., 2009; Perras et al., 2014; Probst et al., 2014); 

the detection limit for transcript copy numbers, etc.). We note that careful probe design is 

required upstream to ensure the ability of the MB structure to retain a quenched 

fluorophore in the absence of target mRNA. With these considerations in mind, FISH-

TAMB sequences can be sufficiently sensitive to identify varying degrees of 

transcriptional activity in target cells, including active players belonging to the low 

abundance ranks of the rare biosphere. As it does not discriminate based upon 16S rRNA 

phylogeny, FISH-TAMB is capable of identifying mRNA from functional genes which 
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may have been gained through lateral gene transfer. FISH-TAMB is a promising tool for 

characterizing the ecophysiologies of MDM, as well as the metabolic links between 

physically associated taxa. We envision future applications of FISH-TAMB that can be 

coupled with FACS, allowing for cost-efficient deep sequencing surveys of target 

populations, with resulting metagenomes informing efforts to improve isolation of 

uncultivated lineages. 

 

2.6 DATA AVAILABILITY 

Raw sequencing data from the BE326 BH2-Conc AOM enrichment metagenome 

have been deposited at NCBI Genbank under accession number PRJNA562560 

(Sequence Read Archive accession number SRR100029121). Raw flow cytometry data 

and microscopy images are available upon request.  
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2.8 SUPPLEMENTARY INFORMATION 

2.8.1 SI MATERIALS AND METHODS 

2.8.1.1 Detailed sampling and geochemical characterization of BE326 BH2. 

Fracture fluid was collected 1.34 km below land surface within the Beatrix Gold Mine in 

South Africa’s Witwatersrand Basin. Gas, water, and biomass samples were collected 

from the exploratory borehole BE326 BH2 that was drilled in 2007.  An autoclaved 
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stainless-steel manifold fitted with high-pressure ball valves was attached to the sealed 

borehole casing and purged with fracture water for 10 minutes prior to sample collection 

to flush out any contaminant ambient mine air. Autoclaved teflon tubing was retrofitted 

to the manifold’s and flushed for a subsequent 10 minutes at a flow rate of ~800 ml min-1 

for biomass collection into combusted, evacuated, and N2-sparged 180 ml borosilicate 

serum vials sealed and crimped with butyl rubber stoppers.  Temperature, pH, electrical 

conductivity, and total dissolved solids (TDS) were made using handheld probes (Hanna 

Instruments, Woonsocket, RI USA). Measurements for dissolved H2S, H2O2, Fe2+, and 

total Fe were made in the field using CHEMets® Visual Kits (CHEMetrics, Inc., Midland, 

VA USA). Anion measurements were made using a Dionex IC25 ion chromatograph 

coupled to an MSQ-quadruple mass spectrometer (Thermo Scientific, Waltham, MA 

USA). 

“Little Eddie”, the portable, 8.2 kg, fourth generation model of the high-volume 

gas extraction system EDGAR (Extraction of Dissolved Gases for Analysis of 

Radiokrypton), was connected to the manifold for gas sampling (Probst et al., 2006; 

Yokochi, 2016). Dissolved gases were collected into air-tight canvas bags on site and 

transferred into pre-evacuated, 160-ml borosilicate vials (Ward et al., 2004) upon return 

to the surface using a 50-ml gas-tight syringe (Trajan Scientific, Ringwood, Victoria, 

Australia). Gas vials were stored at 5˚C prior to measurement using gas 

chromatographers installed with a flame-ionizing detector (FID) (for CH4 and CO2) and a 

thermal conductivity detector (TCD) (for O2, H2, He, and N2) (Peak Performer 1 series, 

Peak Laboratories, Mountain View, CA USA). Dissolved gas concentrations were 

calculated using the ratio of the gas flow rate to the water flow rate. We confirm that 
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anaerobic conditions were maintained during the sample collection process based on the 

dissolved gas composition (Table 2S.1).  

 

2.8.1.2 BE326 BH2-Conc fracture fluid enrichments and M. barkeri. DSMZ 

medium 120a was prepared in an anaerobic glove bag (Coy Laboratory Products, Grass 

Lake, MI USA) containing a 95:5 N2:H2 atmosphere. The following were added to one 

liter of degassed distilled H2O: 2 mM K2HPO4, 1.7 mM KH2PO4, 9.3 mM NH4Cl, 2 mM 

MgSO4 •7H2O, 1.7 mM CaCl2•2H2O, 2.25 g 4.3 mM NaCl, 2.00 ml of FeSO4•7H2O 

(0.1% w/v in 0.1 N H2SO4), 2.00 g yeast extract, 2.00 g casitone, 2.5 mM NaHCO3, 1.3 

mM Na2S•9H2O, 1.7 mM L-cys HCl•H2O, 1.0 ml of trace element solution SL-10 (per 

liter of distilled H2O: 10.0 ml HCl [25%, 7.7 M], 1.50 g FeCl2•4H2O, 70 mg ZnCl2, 100 

mg MnCL2•4H2O, 6 mg H3BO3, 190 mg CoCl2•6H2O, 2 mg CuCl2•2H2O, 24 mg 

NiCl2•6H2O, 36 mg Na2MoO4•6H2O), and 0.3 ml Na-resazurin solution (0.1% w/v). The 

medium was dispersed as 9-ml aliquots into 25-ml Balch tubes and sealed with 0.1 N 

NaOH-boiled butyl rubber stoppers and aluminum crimps. Balch tubes were sparged for 

20 minutes at 30 psi with 100% ultra-high purity Ar gas (Airgas, Inc., Radnor, PA USA) 

and subsequently autoclaved. MD-VS™ vitamin solution (ATCC®, Manassas, VA USA), 

100 µl of 1% (v/v), was added to each vial after autoclaving, and the headspace was 

replaced and over-pressurized to 1.5 x atmospheric pressure (atm) with 80:20 H2:CO2 gas 

(Airgas, Inc., Radnor, PA USA) by flushing for 15 minutes at 30 psi.  

Freeze-dried M. barkeri cells (ATCC® 43569™) were revitalized by inoculation 

into 9 ml of DSMZ medium 120a (pH 7.2). The cultivations were maintained 
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anaerobically in 160-ml borosilicate serum vials at 37˚C. H2 was the sole added electron 

donor. 

For enrichment of sulfate-dependent anaerobic methanotrophy (S-AOM), 10 ml 

BE326 BH2-Conc fracture fluid was added to 90 ml modified artificial seawater medium 

in 160-ml borosilicate serum vials(Widdel and Bak, 1992; Holler et al., 2011).  Per 1 liter 

of distilled, degassed H2O was 376 mM NaCl, 49 mM 26 mM MgCl2, 10 mM Na2SO4, 

8.5 mM KCl, 2.5 mM NaHCO3, 1.3 mM Na2S•9H2O, 1.7 mM L-cys HCl•H2O, 1 ml of 

SL-10 trace metal solution (described above), 10 ml of  MD-VS™ vitamin solution, 0.3 

ml (0.1% w/v) Na-resazurin solution, final pH 8.2. Media sterilization, addition of 

vitamins, and anaerobic sparging followed the protocol described above for DSMZ 120a 

medium, with the exception that serum vial headspaces comprised 2% 13CH4 (Isotec® 

Stable Isotopes, MilliporeSigma, St. Louis, MO USA) in a balance of ultra-high purity N2 

gas (Airgas, Inc., Radnor, PA USA).  

 

2.8.1.3 E. coli mcrA+ expression clone transformation. An mcrA insert was 

isolated and purified from M. barkeri. Triplicate 1-ml aliquots of M. barkeri (OD550 ~109 

cells ml-1) were centrifuged at 11,000 x g for 2 minutes. The supernatant was removed 

down to 10 µl and the cell pellet was stored at -80˚C prior to PCR amplification. 

Triplicate PCR amplifications were performed in 50-µl reaction volumes containing the 

thawed pellet, 1X PCR buffer, 200 µM dNTPs, 1% Tween-20, 1.5 U Taq DNA 

Polymerase (Takara Bio USA, Mountain View, CA USA), 0.2 mM Mlas forward primer 

(5’-GGTGGTGTMGGDTTCACMCARTA-3’) (Luton et al., 2002; Steinberg and Regan, 

2008), and 0.2 mM mcrA-rev reverse primer (5’-
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CGTTCATBGCGTAGTTVGGRTAGT-3’) (Steinberg and Regan, 2008). The 

amplification thermal program was performed on a C1000 Touch™ Thermal Cycler (Bio-

Rad Laboratories, Inc., Hercules, CA USA) and consisted of a 5 minute initial 

denaturation step at 94˚C and 35 cycles of the following: 1 minute denaturation at 94˚C, 1 

minute annealing at 55˚C, and 1 minute extension at 72˚C. Final extension lasted for 10 

minutes at 72˚C. Positive amplification was confirmed by gel electrophoresis and PCR 

products were purified by ethanol precipitation. Two volumes of pre-chilled absolute 

ethanol were added to each PCR reaction tube and mixed by inversion. Reaction tubes 

were incubated at -20˚C for 30 minutes and subsequently centrifuged at 11,000 x g for 30 

minutes. The supernatant was discarded, and the pellet was washed with 500 µl 75% 

ethanol prior to centrifugation at 11,000 x g for 5 minutes. The ethanol wash step was 

repeated once, the supernatant was discarded, and the pellet was resuspended in 1X TE 

buffer. Purified PCR products with 3’-A overhangs generated by Takara Taq DNA 

polymerase were ligated to pGEM®-T Easy vectors by incubating overnight at 4˚C and 

subsequently transformed into JM109 High Efficiency Competent E. coli cells according 

to the manufacturer’s instructions (Promega Corporation, Madison, WI USA). Following 

transformation, E. coli were incubated for 1.5 hours at 37˚C in an orbital shaker at 150 

rpm in a suspension of Luria broth containing 0.05 mg ml-1 ampicillin (LB/A). E. coli 

(~3.4 x 108 cells ml-1 by OD600 measurement) were serially diluted to ~102 cells ml-1 and 

plated on an LB cloning plate with 0.05 mg ml-1 ampicillin, 0.05 mg ml-1 IPTG, and 0.08 

mg ml-1 X-gal (LB/AIX) for blue/white screening and incubated overnight at 37˚C. White 

colonies, presumably containing mcrA PCR products, were picked from the plate and 
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inoculated into LB/A medium. Sanger sequencing of the plasmid confirmed orientation 

of the mcrA insert. 

 

2.8.1.4 E. coli pmoA+ expression clone transformation. Total DNA was 

extracted from BE326 BH2 fracture fluid collected in 2011 using 2x CTAB lysis buffer 

and phenol/chloroform according to the procedure previously described(Lau et al., 2014). 

pmoA genes were PCR-amplified from total DNA using 0.4 mM each of A189m (5’-

GGNGAYTGGGACTTYTGG-3’) and A682m_a (5’-

GAAYSCNGARAAGAACGM(C/A)-3’)-modified primers (Holmes et al., 1995; 

Luesken et al., 2011). PCR amplification was confirmed by gel electrophoresis and PCR 

products were purified by ethanol precipitation before ligation with pGEM®-T Vectors. 

E. coli pmoA+ were isolated as white colonies from LB/AIX cloning plates and 

inoculated in LB/A medium according to the procedure described above. 

 

2.8.1.5 FISH-TAMB formation optimization. Aliquots of FISH-TAMB 

complexes of varying molar ratios (0:1, 5:1, 10:1, 15:1, 20:1, 25:1, 30:1) were mixed 

with 1× DNA loading dye (Thermo Fisher Scientific, Waltham, MA USA) and ran on a 

1% (w/v) agarose gel containing ethidium bromide in 1× TAE buffer solution (40 mM 

Tris, pH 7.6; 20 mM acetic acid, 1 mM EDTA) for 30 minutes at 100 V. A 100 bp ladder 

(New England BioLabs®, Ipswich, MA USA) was used as a size-marker. 

 

2.8.1.6 In vitro MB:target oligonucleotide hybridization assays. Triplicate 100-

µl reaction mixtures containing either 0.4 µM MB or 1 µM FISH-TAMBs in 1x DPBS 
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were incubated at 37˚C for 10 minutes with 0.4 µM of oligonucleotide sequences 

complementary to MBs. Background signal (due to unbound MB probes) and potential 

non-specific hybridization fluorescence were respectively assessed by incubating MB and 

FISH-TAMBs in the absence of any target (blank) and an oligonucleotide sequence 

specific to particulate methane monooxygenase beta subunit (pmoA) (5’-

GAAYSCNGARAAGAACGM-3’) (Luesken et al., 2011). Fluorescence images were 

taken every 5 minutes for 100 minutes using a Typhoon 9410 Variable Mode Imager® 

(Molecular Dynamics, GE Healthcare, Little Chalfront, UK) (excitation 633 nm, 

detection bandwidth 655 - 685 nm, exposure time 5 min.).  

Fluorescence intensity was measured as a function of temperature and salt 

concentration to determine stability profiles of the MB probe sequence in the presence 

and absence of MB targets (bound MB vs. unbound MB states). Three 50-µl reaction 

volumes were prepared for the unbound MB controls, comprising 16 nM MBs and 

Takara PCR buffer containing 1.5 mM MgCl2 (1×), 7.5 mM MgCl2 (5×), or 15 mM 

MgCl2 (10×). Three bound MB reactions were set up using the same recipes except with 

the addition of 32 nM target oligo sequences. Reaction mixtures were incubated at 37˚C 

for 1 hour on a real-time qPCR 7900HT system (Applied Biosystems, Inc., Carlsbad, CA 

USA). Melting curve analysis was done for temperatures ranging from 25˚C to 95˚C with 

fluorescence signals measured every 0.2˚C. Optimal detection temperature for positive 

MB-target hybridization was determined as the temperature with the highest signal-to-

background noise ratio, as indicated by the relative fluorescence intensities of bound MB 

and unbound MB, respectively.  
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2.8.1.7 Population gating parameters in flow cytometry. Cell population gates 

were constrained using control samples comprising non-FISH-TAMB-treated cells in 1× 

DPBS. To correct for sources of background fluorescence three additional controls were 

prepared: 1) FISH-TAMB + LB medium in 1× DPBS, 2) FISH-TAMB + DSMZ medium 

120a in 1× DPBS, and 3) FISH-TAMB only in 1× DPBS. Three replicates were prepared 

for each treatment and incubated at 37˚C for 15 minutes. Cell-sized objects were gated 

with respect to the side-scattered light area (SSC-A) and fluorescence signals of 0.5 µm 

microspheres along the 575/26 nm (PE) filter (320 V). This gate was sufficient to identify 

E. coli based on known autofluorescence properties (Benson et al., 1979; Renggli et al., 

2013). M. barkeri and BE326 BH2-Conc cells were identified as sub-populations from 

the cell-sized objects gate on a 450/50 nm (F420) filter (321 V) that measures 

autofluorescence of the F420 enzyme (420 nm emission) (Doddema and Vogels, 1978; 

Dolfing and Mulder, 1985; Hendrickson and Leigh, 2008). FISH-TAMB-labeled cells 

were identified as appropriately autofluorescent cell-sized objects that also demonstrated 

at least a 10% increase in fluorescence on a 700/25 nm (Cy5) filter relative to the non-

FISH-TAMB-treated cell populations. Gating was performed using BD FACSDiva 

V8.0.1 software (BD Biosciences, San Jose, CA USA). 

 

2.8.2 SI RESULTS AND DISCUSSION 

2.8.2.1 Conformational stability and target specificity of mcrA-targeting MBs. 

Melting curve analysis was performed between 25˚C – 95˚C under three buffer 

conditions containing 1.5 mM, 7.5 mM, and 15 mM MgCl2 to assess the stability and 

fluorescence intensity of MB in the presence and absence of target mcrA oligonucleotide 
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sequences (i.e. bound vs. unbound MB states). Results revealed maximum fluorescence 

of mcrA-bound MB at 25˚C under all investigated saline buffer solutions. (Table 2S.2, 

Figure 2S.1). This temperature corresponded with the highest signal-to-background noise 

ratio (195:1 relative to unbound MB in 1× PCR buffer containing 1.5 mM MgCl2). 

Bound MB fluorescence intensity remained > 17× greater than unbound MB up to 64˚C 

before dropping down to 2× greater emission for higher temperatures up to 95˚C (Figure 

2S.1). MB conformation remained intact at all assessed salinities, but signal-to-

background noise improved with increased salt concentration between 55˚ - 65˚C (Table 

2S.2).  Thus, for this mcrA target sequence, FISH-TAMB demonstrates a large 

operational temperature range of 25˚C - 65˚C but may be limited from in situ studies of 

thermophilic methanogens and ANMEs.  

In vitro and in vivo hybridization assays were performed to assess (i) 

hybridization of MB and FISH-TAMBs to target mcrA oligonucleotide sequences, (ii) 

whether resulting fluorescence from probe-target hybridization was differentiable from 

background fluorescence of unbound and potentially non-specifically bound MB probes, 

and (iii) optimal incubation time for detection of positive hybridization fluorescence. Gel 

imaging revealed that background autofluorescence of unbound MB significantly 

diminished when MB was non-covalently bound to R9, showing a minimum 20:1 R9:MB 

molar ratio for complete complexation of all free-floating MB in solution (Figure 2S.1). 

Thus, this molar ratio was selected for the formation of FISH-TAMBs utilized in 

subsequent experiments. It is possible that R9 may be playing a role in stabilizing the MB 

hairpin conformation, thus improving the quencher’s absorption of background 

fluorophore emission. However, this stabilization appeared to be inhibitory to MB-target 
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hybridization when FISH-TAMBs were incubated with mcrA oligonucleotide sequences 

in vitro (Figure 2S.3E). Because positive fluorescence signals were detected when FISH-

TAMBs encountered intracellular mcrA mRNA in vivo in M. barkeri, BE326 BH2-Conc, 

and E. coli mcrA+ (Figure 2S.3F-H), we hypothesize that intracellular scavenging may 

physically dissociate R9 from MB allowing subsequent MB-target hybridization. While 

the exact mechanism remains unknown, the MB probes released from R9 appear to retain 

hairpin conformation following cellular penetration, as evidenced by minimal 

fluorescence in negative control E. coli pmoA+ cells incubated with FISH-TAMBs 

(Figure 2S.3I). 
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2.8.3 SUPPLEMENTARY TABLES 

Table 2S.1: Geochemical data for BE326 BH2 fracture fluid collected 24 June 2016. “< 
d.l.”, below detection limit.  
Temperature (˚C) 31.8 
 pH 8.2 
pe -3.8 
TDS (ppt) 4.3 
Conductivity (mS cm-1) 8.7 
H2S (ppm) <0.1 
H2O2 (ppm) <0.1 
Fe2+ (ppm) 0.1 
Total Fe (ppm) 0.2 
PO43- (ppm) <0.1 
HCOO- (ppm) < d.l. 
CH3COOH (ppm) < d.l. 
NO2- (ppm) 0.52 ± 0.05  
NO3- (ppm) 0.01 
SO42- (ppt) 7.43 ± 0.19 
Br- (ppm) 9.14 ± 0.22 
O2 0.2% 
N2 5.0% 
H2 0.1% 
CH4 90.3% 
CO2 4.4% 
He 0.02% 
water:gas flow rate ratio 320:1 
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Table 2S.2. FISH-TAMB and 16S rRNA FISH probe sequences used in this study. 

Probe Name 5’ reporter/3’ 
quencher/reporter 

Sequence (5’ – 3’) Reference 

Eury_mcrA-rev_FISH- 
     TAMB 

Cy5/BHQ3 CCT GGC GTT CAT BGC GTA GTT VGG RTA GTC CAG G (Steinberg 
and Regan, 
2008) 
 

pGEM-T-Easy_lacZα- 
     rev_FISH-TAMB 
 

Cy5/BHQ3 CCT GGC ACT AGT GAT ATC GAA TTC CCG CGC CAG G this study 

ANME-2_EelMS_932-16S-     
     rRNA-FISH  

Atto 565/Atto 565 AGC TCC ACC CGT TGT AGT (Boetius et al., 
2000; Orphan, 
2001; 
Hatzenpichler 
et al., 2016) 
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Table 2S.3. Fluorescence of bound and unbound mcrA-targeting MB as a function of 
salinity and temperature.  
 
Temp  Buffer 

Solution 
Bound MB 
Relative 
Fluorescence 

Unbound MB 
Relative 
Fluorescence* 

Signal to 
Background 
(S:B) ratio 

25˚C 1x PCR buffer 
containing 1.5 mM 
MgCl2 

3.9 x 103 0.2 x 102 195:1 

5x PCR buffer 
containing 7.5 mM 
MgCl2 

3.1 x 103 0.2 x 102 155:1 

10x PCR buffer 
containing 15 mM 
MgCl2 

2.5 x 103 0.2 x 102 125:1 

35˚C 1x PCR buffer 
containing 1.5 mM 
MgCl2 

3.2 x 103 0.2 x 102 160:1 

5x PCR buffer 
containing 7.5 mM 
MgCl2 

2.7 x 103 0.2 x 102 135:1 

10x PCR buffer 
containing 15 mM 
MgCl2 

2.2 x 103 0.2 x 102 110:1 

45˚C 1x PCR buffer 
containing 1.5 mM 
MgCl2 

2.5 x 103 0.2 x 102 125:1 

5x PCR buffer 
containing 7.5 mM 
MgCl2 

2.2 x 103 0.2 x 102 110:1 

10x PCR buffer 
containing 15 mM 
MgCl2 

1.8 x 103 0.2 x 102 90:1 

55˚C 1x PCR buffer 
containing 1.5 mM 
MgCl2 

1.7 x 103 1.0 x 102 17:1 

5x PCR buffer 
containing 7.5 mM 
MgCl2 

1.6 x 103 0.2 x 102 80:1 

10x PCR buffer 
containing 15 mM 
MgCl2 

1.4 x 103 0.3 x 102 47:1 
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65˚C 1x PCR buffer 
containing 1.5 mM 
MgCl2 

6.0 x 102 2.0 x 102 3:1 

5x PCR buffer 
containing 7.5 mM 
MgCl2 

8.0 x 102 0.6 x 102 16:1 

10x PCR buffer 
containing 15 mM 
MgCl2 

8.0 x 102 0.6 x 102 13:1 

75˚C 1x PCR buffer 
containing 1.5 mM 
MgCl2 

5.0 x 102 2.0 x 102 3:1 

5x PCR buffer 
containing 7.5 mM 
MgCl2 

3.0 x 102 1.0 x 102 3:1 

10x PCR buffer 
containing 15 mM 
MgCl2 

2.0 x 102 1.0 x 102 2:1 

85˚C 1x PCR buffer 
containing 1.5 mM 
MgCl2 

4.0 x 102 1.7 x 102 2:1 

5x PCR buffer 
containing 7.5 mM 
MgCl2 

3.0 x 102 1.0 x 102 3:1 

10x PCR buffer 
containing 15 mM 
MgCl2 

2.2 x 102 1.0 x 102 2:1 

95˚C 1x PCR buffer 
containing 1.5 mM 
MgCl2 

3.9 x 102 1.3 x 102 3:1 

5x PCR buffer 
containing 7.5 mM 
MgCl2 

2.1 x 102 0.7 x 102 3:1 

10x PCR buffer 
containing 15 mM 
MgCl2 

1.7 x 102 0.8 x 102 2:1 

     

* Unbound MB fluorescence, due to absence of 
mcrA targets, is treated as background noise. 
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2.8.4 SUPPLEMENTARY FIGURES 

 

Figure 2S.1. Complexation between R9 cell-penetrating peptide and mcrA MB 
sequences in fixed R9:MB molar ratios. Unbound MB shows up as white bands in the gel 
and complete complexation of all MB to R9 is evidenced by the lack of a physical band. 
Optimal R9:MB ratio was determined to be 20:1. 
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Figure 2S.2. Heat stability of mcrA MB sequence. In vitro melting curve analysis of 
mcrA-targeting MB in 5X PCR buffer containing 7.5 mM MgCl2. (i) mcrA MB 
hybridized to target oligonucleotide sequence. (ii) Unbound mcrA MB. 
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Figure 2S.3. MB and FISH-TAMB target specificity in vitro and in vivo. (A) 0.4 µM MB 
in 1x PBS. (B) 0.4 µM MB + pmoA target oligo. (C) 0.4 µM MB + mcrA target oligo. 
(D) 1 µM FISH-TAMB in 1x PBS. (E) 1 µM FISH-TAMB + mcrA target oligo. (F) 1 
µM FISH-TAMB + M. barkeri. (G) 1 µM FISH-TAMB + BE326 BH2-Conc. (H) 1 µM 
FISH-TAMB + E. coli mcrA+. (I) 1 µM FISH-TAMB + E. coli pmoA+. Images taken 
after 20 minutes incubation with a Typhoon 9410 Variable Mode Imager®. Excitation 
633 nm. Emission 675/10 nm. Exposure time 5 minutes per image. 
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Figure 2S.4. Unbound MB fluorescence lifetime. An in vitro hybridization time series 
experiment monitored Cy5 fluorescence in (A) bound (0.4 µM MB + 0.4 µM mcrA target 
oligo) and (B) unbound MB (0.4 µM MB in 1x PBS). Images taken with a Typhoon 9410 
Variable Mode Imager®. Excitation 633 nm. Emission 675/10 nm. Exposure time 5 
minutes per image. 
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Figure 2S.5. Fluorescence lifetime of Cy5 in FISH-TAMB-hybridized cells. BE326 
BH2-Conc methanogenic enrichments were incubated anaerobically with 1 µM FISH-
TAMB and subsequently imaged via spinning disk photomicroscopy. Samples were 
excited with a 647 nm laser line and analyzed at 670 nm under a 100% CO2 atmosphere. 
Micrographs were snapped every minute for 14 hours. Micrographs here represent the 
first four hours of observation. (A) Single cells. (B) Physically associated cells. (C) Cell 
pair in which an unlabeled cell becomes labeled between 20 and 120 minutes. (D) Cell 
aggregate. Scale bar 5 µm. 
 

[A]

[C]

[D]

[B]

0 min. 20 min. 120 min. 240 min.



Chapter 2: 
FISH-TAMB for fixation-free mRNA labeling 

 
 

 69 

 
 
Figure 2S.6. FISH-TAMB viability assessment by growth curve analysis. Pure cultures 
of E. coli mcrA+ and E. coli lacZα+ (A) and M. barkeri (B) (~106 cells ml-1) were 
incubated with 1 µM FISH-TAMBs and inoculated into their respective growth media. 
Growth was measured spectrophotometrically (OD600 for E. coli, OD550 for M. barkeri) 
and growth rates compared to untreated control cultures.  
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CHAPTER 3 
 
 
Draft genome sequence of Candidatus “Bathyarchaeota” archaeon BE326-BA-RLH, 
an uncultured putative anaerobic methanotroph from South Africa’s deep 
continental biosphere 
 
Keywords: metagenomics, Bathyarchaeota, anaerobic methane oxidation 
 
 

3.1 ABSTRACT 

Metagenomic sequencing of fracture fluid from South Africa recovered a nearly 
complete genome belonging to the archaeal phylum Candidatus “Bathyarchaeota”. 
Metagenomic-assembled genome Ca. BE326-BA-RLH possesses a complete Wood-
Ljundal pathway, but also genes involved in methane metabolism and dissimilatory 
nitrate reduction to ammonium. This study presents the first genomic evidence for 
potential anaerobic methane oxidation in the Ca. “Bathyarchaeota”.  
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3.2 INTRODUCTION 

The uncultured Ca. “Bathyarchaeota” is a deeply branching and diverse phylum 

of deep biosphere inhabitants, whose recently inferred role in methanogenesis supports an 

early evolution of biogenic methane cycling (Evans et al., 2015; Lloyd, 2015). We report 

a near-complete metagenome-assembled genome (MAG) of Ca. “Bathyarchaeota” 

archaeon BE326-BA-RLH assembled from metagenomic data obtained from a 

Subsurface chemoLithoautotrophic Microbial Ecosystem (SLiME) (Stevens and 

McKinley, 1995) in oligotrophic fracture fluid (33.2˚C, pH 7.5, pe = -0.48) from 1.34 

kmbls at Beatrix Gold Mine, South Africa.  

 

3.3 MATERIALS AND METHODS   

3.3.1 Site description and sample collection, BE326 BH2 borehole, Beatrix 

Mine. Fracture fluid was collected in 2015 from the BE326 BH2 borehole following 

established procedures (Lau et al., 2014; Magnabosco et al., 2014).  A sterile stainless-

steel manifold fitted with high-pressure ball valves was attached to sealed borehole 

casing and purged with water for 10 minutes (flow rate ~ 8 L min-1) to minimize 

contamination by mine air. Ethanol-sterilized Teflon™ tubing was connected to the 

manifold and flushed for another 10 minutes (flow rate of ~800 mL min-1). Biomass was 

collected onto a pre-autoclaved 0.2 µm 25-cm long Memtrex NY filter (Cat. No. MNY-

92-1-AAS, General Electric Co., Minnetonka, MN) for 49 days (flow rate ~100 mL min-

1). Upon retrieval, water was decanted from the filter and replaced with sterile RNA 

preservation solution (20 mM ethylenediaminetetraacetic acid [EDTA], 0.3 M sodium 

citrate, 4.3 M ammonium sulfate; pH adjusted to 5.2 using concentrated H2SO4) (Brown 
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and Smith, 2009). The filter was aseptically transferred into double Ziploc® bags and 

stored overnight at 4˚C to allow RNA preservation solution to completely saturate all 

membrane layers. The filter was shipped back to Princeton University in a liquitd N2-

charged dry shipper and stored at -80˚C until processing.   

 

3.3.2 Genomic DNA isolation and metagenomic sequencing. Total nucleic acids 

and proteins were isolated from the MNY filter following the procedure by Lau et al. 

(2014). The MNY filter was cut into 2-cm thick discs using a bleached band saw and 

subsequently sliced into 2 cm2 slices using a flame-sterilized razor. Cells were lysed by 

treating filter slices in 2X cationic detergent cetyltrimethylammonium bromide (CTAB) 

lysis buffer (pH 8.0) containing lysozyme (5 mg mL-1 final concentration) 

(MilliporeSigma, Burlington, MA USA) and Proteinase K (0.2 mg mL-1 final 

concentration) (MilliporeSigma) and incubated for 30 minutes at 60˚C. 

Phenol/chloroform/isoamyl alcohol (25:24:1) was added to the lysate (4:5 v/v) and then 

incubated in a 60˚C water bath for 1 min and an ice bath for 5 min before centrifugation 

at 4300 × g for 10 min at 23˚C. DNA and RNA were precipitated by adding isopropanol 

(1:1 v/v), incubated on ice for 30 min, and centrifuged at 4300 × g for 15 min at 23˚C. 

The supernatant was decanted, and the pellet was rinsed using 20˚C-chilled 75% (v/v) 

ethanol. Pellets were left to air dry under a laminar flow hood for 1 hour then 

resuspended in 1X TE buffer (Tris-EDTA, pH 8) and stored in 1.5 mL Eppendorf tubes 

(Eppendorf, Hamburg, Germany).  

DNA was collected from an aliquot of total nucleic acids following treatment with 

RNase A (10 µg mL-1 final concentration) (ThermoFisher Scientific, Waltham, MA 
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USA) and two added volumes of 100% (v/v) molecular grade ethanol. The mixture was 

incubated at -20˚C for 30 min and subsequently centrifuged at 11,500 × g at 23˚C. The 

metagenomic library was prepared using the PrepX DNA library kit and automated 

Apollo 324™ system (WaferGen Biosystems, Inc., Fremont, CA USA). The library DNA 

concentration was quantified on a Qubit® 2.0 fluorometer using a Qubit™ 1X dsDNA HS 

assay (Invitrogen, Carlsbad, CA USA). Library DNA was pooled at equal molar amounts 

and paired end (2 x 100 nt) metagenomic sequencing was performed for 300 cycles at the 

Marine Biological Laboratory using the Illumina HiSeq 2000 platform (Illumina Inc., San 

Diego, CA USA).  

 

3.3.3 Metagenome assembly, MAG binning, and annotation. Tools on the 

Galaxy web platform at https://galaxy.princeton.edu (Afgan et al., 2018) were used to 

quality filter raw reads. Filter FASTQ v.1.1.1 removed reads having 90% of bases with 

Phred quality scores <30. Remove Sequencing Artifacts v.1.0.1 removed homopolymers. 

Trim Galore! v.0.4.3.1 removed reads that matched the Illumina Universal adapter 

sequence anywhere with a max error rate of 0.1, match times of 1, minimum overlap 

length of 20, including “Ns” as matches. Trim v.0.0.1 removed 5 bases from the 3’ end, 

and then reads shorter than 50 bases and those containing “Ns”. The resulting quality 

reads were assembled using SPAdes v.3.11.0 (--meta option) (Bankevich et al., 2012). 

Scaffolds were binned into MAGs using MetaBAT v.2.11.2 (Kang et al., 2015). Quality-

filtered metagenome reads were mapped back to assembled MAGs using Bowtie2 v.2.3.2 

(default --very-sensitive mode options) to recruit more reads belonging to the bin 

(Langmead and Salzberg, 2012). Protein-encoding genes were identified using Prodigal 
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v.2.6.3 (Hyatt et al., 2010) and annotated using NCBI BLAST v.2.2.29+ (Camacho et al., 

2009), Prokka v.1.13 (Lupetti et al., 2014), GraftM v.0.11.1 (Boyd et al., 2018), and 

HHpred v.3.0.0beta (Soding et al., 2005). Tetranucleotide frequency (TNF) and variance 

of TNF (σ2TNF) were calculated in R using tools in the seqinr and Biostrings packages 

(Charif and Lobry, 2007; Pagès et al., 2017).  A summary of the methodological pipeline 

is visualized in Figure 3.1. 

 

 

Figure 3.1. Overview of bioinformatic workflow from sample collection to MAG 
annotation. 

 

3.3.4. 16S rRNA gene phylogeny. The 16S rRNA gene of Ca. “Bathyarchaeota” 

archaeon BE326-BA-RLH was referenced against 455 sequences belonging to 25 Ca. 

“Bathyarchaeota” subgroups and three outgroups (Crenarchaeota, Ca. “Korcharchaeota”, 

and Ca. “YNPFFA”), concatenated in a previous review by Zhou et al. (2018) and made 

publicly available at https://github.com/ChaoLab/Bathy16Stree. A multiple sequence 
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alignment of 16S rRNA gene sequences was compiled using Clustal Omega v.1.2.4 

(Sievers and Higgins, 2014). Gaps were removed from aligned sequences using an 

automated trimming heuristic function in trimAl v.1.2b (--automated1) (Capella-

Gutierrez et al., 2009) and a maximum likelihood tree was inferred from 100 non-

parametric bootstrapping iterations of the GTRGAMMA model in RAxML v.8.2.11 

(Stamatakis, 2014).  

 

 3.3.5 Sequence phylogeny of methyl-coenzyme M reductase subunit A (mcrA). 

BE326-BH2 metagenome assembly scaffolds identified by GraftM as mcrA sequences 

were aligned with 174 unique mcrA amino acid sequences (> 200 aa residues) assembled 

from previous publications (Evans et al., 2015; Jungbluth et al., 2017; Wang et al., 2019) 

representing known and putative CH4/short alkane metabolizers in the Euryarchaeota, 

Ca. “Bathyarchaeota”, Ca. “Nezhaarchaeota”, Ca. “Archaeoglobi”, and Ca. 

“Korarchaeota”. Multiple sequence alignment and alignment trimming was performed 

using Clustal Omega and trimAl as described above. In the absence of a rooted outgroup, 

the best-fit model of nucleotide substitution to assess phylogenetic relatedness was 

informed using jModelTest v.2.10.0 (Guindon and Gascuel, 2003; Darriba et al., 2012). 

The resulting maximum likelihood tree was constructed using 100 non-parametric 

bootstrapping iterations of the PROTGAMMAILGF model in RAxML.  

 Phylogenetic trees were visualized using FigTree v.1.4.4 

(https://github.com/rambaut/figtree/releases) and enhanced to group related taxa using 

Adobe Illustrator 2020 v.24.1.0.  
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3.4 RESULTS AND DISCUSSION 

3.4.1 MAG assembly statistics. From an initial pool of 43,742,580 raw sequenced 

reads, a total of 34,820,059 quality-filtered paired end reads were recovered from 

genomic DNA extracted from the BE326-BH2 borehole. From the metagenome 

assembly, MetaBAT binned a near-complete (estimated at 89.79%), low-contamination 

(3.74%) MAG with 0% strain heterogeneity. Quality-filtered BE326-BH2 metagenome 

reads that mapped to the scaffolds in this initial bin were reassembled using SPAdes 

(default option). The resulting draft genome (2.09 Mb, 44.9% GC) comprises 227 contigs 

with an N50 length of 14,564 bp and has an 86% coding density (Table 3.1) and contains 

23 30S and 29 50S ribosomal proteins, a single copy of 16S, 23S, and 5S rRNA genes, 

and 91 tRNA genes. 

 

Table 3.1. Statistics summary of CH4-metabolizing Ca. “Bathyarchaeota” genomes 
 BE326-BA-RLH 

(this study) 
BA1a  

 
BA2a  

 
Completeness (%) 89.8b 91.6 93.8 

Contamination (%) 3.7 2.8 3.7 
Total length (bp) 2,097,091 1,931,714 1,455,689 
GC content (%) 44.9 47.1 44.2 

Num. contigs 227 96 58 
N50 contigs 14,564c 32,677 43,519 

Num. coding sequences 2,229 2,403 1,761 
Coding density (%) 86.0 80.8 83.6 

Average coverage (×) 21.1 35.8 49.8 
Relative abundance (%) 0.36d 0.92 1.03 

a Source: Evans et al. (2015) 
b Based on lineage-specific marker genes determined via CheckM (Parks et al., 2015) 
c Calculated from Prodigal (Hyatt et al., 2010) 
d Estimated from the percentage of reads mapped back to the metagenome assembly. 
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3.4.2 Phylogeny of Ca. “Bathyarchaeota” archaeon BE326-BA-RLH. The 

phylogeny of the MAG was identified as an unknown archaeon according to CheckM 

v.1.0.7 (Parks et al., 2015), but a BLASTn search determined that the 16S rRNA gene 

(1139 bp) shares 97% similarity to uncultured Ca. “Bathyarchaeota” (EU559699, 

EU155992, EU155991), and 87% and 86% similarity to putative Ca. “Bathyarchaeota” 

methanogens BA2 (LIHK01000010) and BA1 (LIHJ01000085), respectively 

(SRX1122679) (Evans et al., 2015). A maximum likelihood tree of aligned 16S rRNA 

gene sequences placed this MAG as belonging to a deeply divergent clade interpreted as 

Ca. “Bathyarchaeota” Subgroup-18 (Figure 3.2). This subgroup is apparently 

monophyletic with Subgroup-3, represented by previously identified putatively 

methanogenic Ca. “Bathyarchaeota” BA1 and BA2  (Evans et al., 2015), providing 

increasingly supportive evidence for a deep root of methane metabolisms amongst the 

Archaea (Lloyd, 2015).  



 

 

Chapter 3: 
Genomic Potential for AOM in Candidatus “Bathyarchaeota” 

 

98 

 

Figure 3.2. 16S rRNA gene phylogenetic tree showing the placement of Ca. 
“Bathyarchaeota” archaeon BE326-BA-RLH among other Ca. “Bathyarchaeota” 
OTUs. Crenarchaeota, Ca. “Korarchaeota”, and Ca. “YNPFFA” are referenced as 
outgroups. Monophyly of subgroups 18 and 3 indicated by pink branches. Reference 
NCBI accession numbers of 16S rRNA genes used in the building of this tree are 
available at https://github.com/ChaoLab/Bathy16Stree and Appendix C, File 
3C.1.fasta. Scale bar refers to average number of substitutions per site.  

 

3.4.3 Metabolic potential for methane metabolism. Ca. “Bathyarchaeota” 

BE326-BA-RLH encodes proteins involved in methanogenesis via the Wood-Ljundal 

pathway, including a complete CODH/ACS operon, tungsten-containing 

formylmethanofuran dehydrogenase (FwdDACB), two copies of formylmethanofuran 

tetrahydromethanopterin formyltransferase (Ftr), methenyl tetrahydromethanopterin 
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cyclohydrolase (Mch), methylene tetrahydromethanopterin dehydrogenase (MtdB), 5,10-

methylenetetrahydromethanopterin reductase (Mer), tetrahydromethanopterin S-

methyltransferase (MtrH), and the nickel-iron (NiFe)-containing CoB-CoM 

heterodisulfide reductase (HdrABC), along with associated NiFe hydrogenase maturation 

proteins (e.g., HypCEF). Similar to Ca. “Bathyarchaeota” BA1 and BA2, as well as the 

Methanomassiliicoccales, we did not detect the membrane-bound HdrE (Evans et al., 

2015; Zhou et al., 2018). Electron shuttling in the methanogenesis pathway is apparently 

mediated by energy-conserving ferredoxin and coenzyme F420, the latter of which is 

encoded by two operons encoding F420-reducing hydrogenase (FrhABDG). The 

metabolic potential to utilize H2 is not apparent, given an absence of membrane-bound 

hydrogenases such as energy conserving hydrogenase (Ech) and methanophenazine-

recycling hydrogenase (Vht/Vho).  

The metabolic potential for growth on methylated compounds is also indicated by 

the detection of a trimethylamine corrinoid protein (MttC) adjacent to Mtr. Additionally, 

we detected 7 copies of methyl sulfide methyltransferase-associated sensors (MsmS), one 

of which was found immediately adjacent to alpha and beta units of sulfide 

dehydrogenase (SudAB), as well as coenzyme PQQ synthesis protein E (PqqE), which 

may speak to quinoproteins participating in the oxidation of thiol groups. Evidence for 

motility is indicated by archaeal flagellin (FlaI) and methyl-accepting chemotaxis 

proteins, including the CheA histidine kinase, CheW signal transducer, and CheB and 

CheY phosphoryl regulators. Several genes in an incomplete reductive TCA cycle were 

also detected, suggesting Ca. “Bathyarchaeota” BE326-BA-RLH possesses metabolic 

plasticity to fix carbon (Figure 3.3).   
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Figure 3.3. Key metabolic pathways in Ca. “Bathyarchaeota” archaeon BE326-BA-
RLH. Genes are color-coded by pathway, with missing genes indicated with a white 
fill. Gene abbreviations are provided in Appendix A, Table A.1.  

 

A partial methyl-coenzyme M reductase subunit A (McrA) sequence was 

identified in a 265-bp-long contig in the metagenome assembly, which shared 70% 

identity to an amino acid sequence of an uncultured archaeon (AGA20295) based on 

BLASTp search.  A maximum likelihood tree of 175 mcrA amino acid sequences for this 

and 175 reference sequences placed this McrA as a deep branch rooting the Ca. 

“Bathyarchaeota” clade (Figure 3.4). A comparison of GC content versus tetranucleotide 

frequency variance of the putative McrA sequence with Ca. Bathyarchaeota BE326-BA-

RLH genome scaffolds did not rule out this McrA from belonging to the MAG (Figure 

3.5).  Given the short length of the contig, we anticipate it was too short to be added to 
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the bin by MetaBAT without also increasing the potential of recruiting contaminant 

reads.  

 

Figure 3.4. Maximum likelihood tree placing the putative Ca. “Bathyarchaeota” 
BE326-BA-RLH mcrA sequence at the root of the Ca. “Bathyarchaeota” phylum. 
Scale bar refers to number of average substitutions per position. A fasta file of amino 
acid sequences used in the building of this tree are available in Appendix C, File 
3C.2.fasta  
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Figure 3.5. GC content versus tetranucleotide frequency variance (σ2TNF) of the 
putative Ca. “Bathyarchaeota” McrA sequence (pink circle) relative to scaffold 
sequences recruited to Ca. BE326-BA-RLH (black triangles) and a reference 
Ignavibacteria MAG binned from the BE326-BH2 metagenome assembly (green 
squares).  

 

BE326-BA-RLH contains genes encoding for periplasmic nitrate reductase 

(NarH) and nitrite reductase (NrfHA), which suggests the metabolic capacity to perform 

dissimilatory nitrate reduction to ammonium (DNRA) (Figure 3.3). Formate 

dehydrogenase (FdhAD) was found adjacent to tungsten-containing formylmethanofuran 

dehydrogenase (FwdDACB), supporting metabolic potential of formate-dependent CO2 

reduction to CH4. However, we also note that the Nrf operon is adjacent to Fdh. 
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Therefore, formate may also serve as a possible electron shuttle between reverse 

methanogenesis and DNRA.  To our knowledge Ca. BE326-BA-RLH is the first 

described Ca. “Bathyarchaeota” genome encoding genes that may couple anaerobic 

methane oxidation (AOM) to known oxidants. This study provides further support that 

members of Bathyarchaeota may perform AOM (Biddle et al., 2006; Evans et al., 2015; 

Lever, 2016). 

 

3.5 DATA AVAILABILITY.  

The BE326-BH2 borehole whole shotgun 2015 metagenome and draft genome 

sequences of Ca. “Bathyarchaeota” archaeon BE326-BA-RLH have been deposited at 

NCBI GenBank under accession numbers QZGF00000000 (SRR7867194) and 

QYYE00000000 (SRR7866305), respectively. The version described in this chapter is 

QYYE01000000. Fasta files of 16S rRNA genes and McrA amino acid sequences used to 

generate Figures 3.2 and 3.4 are respectively available in Appendix C as File 3C.1.fasta 

and File 3C.2.fasta. 
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CHAPTER 4 
 
Tracing piezotolerant anaerobic methane oxidation in deep sub-seafloor microbial 
communities from IODP 370 Site C0023A in the Nankai Trough accretionary 
complex 
 
Keywords: anaerobic methane oxidation, ANME, piezotolerant microorganisms  
 
 
4.1 ABSTRACT 

Deep marine sediments are one of the largest reservoirs of microbial biomass on 
Earth, but very little is known about the extent of the ecophysiological activities they play 
host to, particularly in high-temperature regimes. To address these unknowns, sub-
seafloor sediment cores were collected during International Ocean Discovery Program 
(IODP) Expedition 370 from Site C0023A in the Nankai Trough accretionary complex. 
In this study we incubated sub-core sediment slurries from depths ranging from 257 – 
865 m below seafloor for 350 days at high hydrostatic pressure (40 MPa) under 
approximate in situ temperatures with isotopically heavy methane (13CH4) and a variety 
of electron acceptors – sulfate, ferrihydrite, manganese oxide, nitrate, and nitrite – to 
assess for piezophilic and thermophilic anaerobic oxidation of methane (AOM). Isotopic 
enrichments of dissolved inorganic carbon (δ13CDIC) from sediment slurries provided 
evidence for AOM in vitro at 40 MPa up to 80˚C, documenting the first evidence for 
thermophilic AOM above 70˚C and piezophilic AOM above 10 MPa. Metagenomic 
evidence for nitrite- and nitrate-dependent AOM was supported at 616 mbsf via the 
identification of Candidatus “Methylomirabilis oxyfera” and ANME-2d phylotype 
Candidatus “Methanoperedens nitroreducens”. ANME-2d and methanogens Ca. 
“Bathyarchaeota” BA1 and BA2 were also identified from the metagenome at 257 mbsf. 
Fluorescent in situ hybridization performed on 40 MPa-recovered cells identified 
anaerobic methanotrophs belonging to the ANME-1 phylotype, while a 16S rRNA gene 
amplicon survey and maximum likelihood phylogenetic analysis revealed the presence of 
sister lineages to Candidatus “Bathyarchaeota” BE326-BA-RLH, which is thought to 
couple AOM to dissimilatory nitrate reduction to ammonia. This study demonstrates how 
we may be overlooking high-pressure regimes as habitable environments for ANMEs, 
providing evidence for new upper temperature and pressure records in the deep, hot 
biosphere.  
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4.2 INTRODUCTION 

Anaerobic oxidation of methane (AOM) is a significant but poorly constrained 

biological sink in the global carbon cycle. Several studies estimate AOM is responsible 

for consuming ~80-90% of CH4 produced in marine sediments (Reeburgh, 2007; Conrad, 

2009; Kirschke et al., 2013). However, this may be an underestimation of the true size of 

the sub-seafloor AOM sink, as these fluxes have been primarily derived from modeling 

sulfate-methane transition zones in continental shelf sediments and are unable to account 

for cryptic CH4 cycling where methanogenesis and AOM proceed simultaneously at 

small temporospatial scales (Egger et al., 2018; Beulig et al., 2019). Recent 

breakthroughs have vastly improved our understanding of the mechanisms by which 

AOM proceeds (Milucka et al., 2012; Sivan et al., 2014; McGlynn et al., 2015; Wegener 

et al., 2015), and we now know that anaerobic methane-oxidizing Archaea (ANMEs) are 

capable of utilizing electron acceptors other than sulfate, including nitrate and oxidized 

species of iron and manganese (Beal et al., 2009; Haroon et al., 2013; Ettwig et al., 2016; 

Cai et al., 2018; Leu et al., 2020). Candidatus “Methylomirabilis oxyfera” is the first 

bacterium identified to carry out AOM, oxidizing CH4 with nitrite via an “intra-aerobic” 

pathway utilizing particulate methane-monooxygenase (pMMO) characteristic of aerobic 

methanotrophs (Ettwig et al., 2010).  

Despite a growing diversity of ANME metabolisms, the extent and distribution of 

AOM in the high pressure, high temperature deep biosphere is seriously underexplored. 

Euryarchaeal ANMEs share close phylogenetic and metabolic heritage with methanogens 

belonging to the same phylum, including the piezophilic methanogen Methanopyrus 

kandleri strain 116, which has been shown to grow up to temperatures of 122˚C and 
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pressures of 40 MPa (Takai et al., 2008). An temperature limit for AOM of 72˚C was 

reported for Guaymas Basin hydrothermal sediments based on isotopically-labeled 

enrichments, and only 50˚C based on detection of ANME-1 16S rRNA gene amplicons 

from the same study (Holler et al., 2011). However, these incubations were performed in 

serum vials at 290 kPa, depressurized by nearly two orders of magnitude relative to the in 

situ pressure from where the samples were collected. ANME-2c have been enriched up to 

10.1 MPa at 20˚C from Eckernförde Bay sediments, 50 times higher than the in situ 

pressure at the site of collection (Timmers et al., 2015).  It is clear that much remains 

unknown about the temperature and pressure limits of anaerobic methanotrophy.  

In this study we follow thermodynamically favorable outputs from geochemical 

modeling to investigate the potential of biological AOM to occur at high temperatures 

and hydrostatic pressures representative of the deep sub-seafloor biosphere of the Nankai 

Trough. To accomplish this, we performed 13CH4 tracer incubations on sub-seafloor 

sediments ranging from 257 – 865 m below seafloor (4900 m water depth),  collected 

from International Ocean Discovery Program (IODP) Site C0023A, drilled during IODP 

Expedition 370: The Temperature Limit of the Deep Biosphere off Muroto (Hinrichs et 

al., 2016). Sediments were incubated in sulfate-free artificial seawater medium for 350 

days at 40 MPa under approximate in situ temperatures with 10 mM of SO42-, Fe3+, Mn4+, 

NO3-, or NO2-, in addition to control incubations with no added oxidant and autoclaved 

kill controls. Measurements of the stable isotopic composition of dissolved inorganic 

carbon (DIC) were coupled with 16S rRNA gene sequencing and fluorescent in situ 

hybridization (FISH) and referenced to in situ geochemistry at Site C0023A to identify 

evidence of active, microbially-mediated under pressure and temperature conditions 
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faithful to the deep sub-seafloor biosphere of the Nankai Trough. Parallel to these high 

pressure incubation experiments, we performed AOM enrichments on sediment samples 

from 257 and 616 mbsf, investigating the same electron acceptor conditions and 

temperatures as the high pressure enrichments, but at 0.15 MPa and with natural 

abundance CH4. From these enrichments we measured isotopic shifts in two clumped 

isotopes of methane – 12CH2D2 and 13CH3D – and also performed metagenomics. 

 

4.3 MATERIALS AND METHODS 

4.3.1 Site C0023A description, Nankai Trough accretionary complex. IODP 

Expedition 370: T-Limit of the Deep Biosphere off Muroto was designed around the 

question of elucidating the upper temperature limit of microbial life in the deep 

oligotrophic sub-seafloor (Hinrichs et al., 2016). Site C0023A is located in the Nankai 

Trough on the subduction boundary between the Philippine Sea and Eurasian plates (N 

32.367˚, E 134.978˚), encompassing a gradual temperature gradient ranging from ~ 2˚C 

at the sediment/seafloor interface to ~130˚C at the basement (Figure 4.1). Beginning at 

4776 m water depth, drilling was performed between 10 September and 10 November 

2016, recovering 112 cores between 189 and 1180 m below sea floor (mbsf). Downhole 

temperature logging was performed down to 410.5 mbsf using an advanced piston corer 

temperature tool (APCT-3) (Heesemann et al., 2006) and used to infer a temperature 

model at depth, d:  

   Td = d2!-1.69 × 10-5# + 0.113663d + 10    (4.1) 

where T is in ˚C and d is in mbsf. A thorough account of drilling operations is described 

in the expedition methodology report (Morono et al., 2017). Geochemical profiles of 
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major gases and aqueous species from Site C0023A are presented in Figure 4.2 and are 

publicly available at http://sio7.jamstec.go.jp/j-cores.data/370/C0023A/. Detailed 

information regarding lithostratigraphy, structural geology, and geochemistry can be 

found in the post-cruise preliminary report (Heuer et al., 2017). 
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Figure 4.1. (A) Regional 
bathymetry map around 
IODP 370 Site C0023A and 
neighboring ODP drilling 
sites (white text). Inset: 
Plate configuration of the 
region with the bathymetry 
map area outlined in red.  
(B) Downhole temperature, 
and cell abundance profile 
of Site C0023A. Black dots 
indicate in situ temperature 
measurements taken at the 
time of drilling. Core 
sediments of depths 
investigated in this study 
are indicated by green 
squares. Projected 
temperature profile (black 
line) inferred using Eq. (1). 
Shipboard cell counts 
represented by blue circles. 
Red dashed line indicates 
the minimum quantification 
limit (MQL) for statistically 
meaningful values. (C) 
Litho-stratigraphy of Site 
C0023A. Major formations 
are indicated by Roman 
numerals. IIA, Axial trench 
wedge facies; IIB, Outer 
trench wedge facies; IIC, 
Trench-to-basin facies; III, 
Upper Shikoku Basin 
facies; IV, Lower Shikoku 
Basin facies; V, Acidic 
volcaniclastics. Figure 
modified from Heuer, V.B. 
et al. (2017) with 
permission. 
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Figure 4.2. Geochemical profiles at Site C0023A for A) CH4 (black) and δ13CCH4 (grey 
circles), B) dissolved inorganic carbon (DIC), C) H2, D) sulfate, E) dissolved ferrous 
iron, and F) dissolved manganese. Stratigraphy for reference. Isotopic composition of 
methane is referenced relative to the Vienna Pee Dee Belemnite standard (VPDB). 
Data are available at http://sio7.jamstec.go.jp/j-cores.data/370/C0023A/.  
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4.3.2 Shipboard processing of microbiological core samples. Samples dedicated 

to microbiological investigations were selected from parent core material by passing a 

rigorous multistep protocol to ensure minimal risk of contamination (Morono et al., 

2017). Briefly, freshly retrieved core sections were visually inspected and subjected to X-

ray computed tomography (CT scans) to quickly filter out any intervals containing 

obvious fractures or drilling disturbances (Tonai et al., 2019). Passing core material was 

aseptically processed to cut WRC segments (~30 cm length) within four hours of arrival 

on deck. Using autoclaved spatulas, outer layers were mechanically shaved off WRC 

surfaces to remove contaminating drilling fluid, which was indicated by a 

perfluorocarbon tracer. WRCs were packed in ethanol-cleaned, UV-sterilized packaging 

inside a UV-sterilized anaerobic chamber (95:5 (v/v) N2:H2 atmosphere; Coy Laboratory 

Products Inc., Grass Lake, MI USA) containing a tabletop air filtration unit (KOACH T 

500-F; MGN International Inc., Temecula, CA USA) and ionizer (Winstat BF-X2MB; 

Shishido Electrostatic Ltd., Tokyo, Japan) to reduce static attraction of potentially 

contaminating airborne particles. Interior surfaces of the glove bag were routinely 

decontaminated with RNase AWAY™ (ThermoFisher Scientific, Waltham, MA USA) and 

irradiated with UV light. Working surfaces were replaced with a fresh sheet of aluminum 

foil between samples. Shipboard counts of contaminant airborne particles and microbial 

cells were performed at regular intervals in core-processing locations throughout the 

duration of the cruise. Drilling fluid was also collected from the delivery pump, 

preparation tank, and core surfaces for biological and chemical contamination analyses.  

Packaged WRCs were shipped to shore on ice by helicopter for immediate cell 

enumeration at the Kochi Core Center (KCC) in Kochi, Japan. WRC samples intended 
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for the high-pressure AOM tracer experiment described in this study were shipped 

overnight on blue ice to Princeton University for storage in the dark at 4˚C for two weeks 

and then shipped overnight on blue ice to the Scripps Institution of Oceanography at 

UCSD. Samples were stored in the dark at 4˚C for future processing. The WRCs utilized 

in this study originated from 257, 414, 429, 496, 574, 583, 616, 659, and 865 mbsf 

(Figure 4.1B). 

 

4.3.3 Vegetative cell and endospore counts. WRC samples dedicated to in situ 

cell counts were transferred to an International Organization for Standards (ISO) Class I 

ultra-clean room at KCC for processing as described in Morono et al. (2017). To 

minimize potential contamination, ~ 5mm of the outer surface of pre-scraped WRCs were 

aseptically shaved off with a sterilized ceramic knife on 500˚C-combusted aluminum foil 

inside a Coy anaerobic chamber as described above. Approximately 10 cm3 of sediment 

was collected from each WRC interior and powderized with a 500˚C-combusted mortar 

and pestle before transfer into a sterile 50 mL centrifuge tube. Sediments were fixed at 

4˚C for 6 hours in a 20 mL suspension of 3% (w/v) NaCl and 10% (v/v) formalin. 

Samples were homogenized by vortexing and slurries were subjected to a Nycodenz 

density gradient separation to detach cells from the matrix (Morono et al., 2017). The 

entire aqueous layer was collected and filtered onto 0.22 µm polycarbonate filters and 

stained in SYBR™ Green I DNA stain according to the manufacturer’s protocol 

(ThermoFischer Scientific). Total vegetative cell counts were obtained 

photomicroscopically via direct counts (Inagaki et al., 2015) on a BX-51 Olympus 

epifluorescent microscope (Olympus Corporation, Tokyo Japan) equipped with a cooled 
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ORCA-AG CCD camera (Hamamatsu photonics K.K., Osaka, Japan), an in-house 

automatic slide loader (Morono et al., 2009; Morono and Inagaki, 2010) and MetaMorph 

v.7.5 software (Molecular Devices, Downington, PA, USA). SYBR-I was excited with a 

490/20 nm band-pass filter and emission was detected on a 528/38 nm filter.  Automated 

cell counting was performed as previously described (Morono et al., 2009).  

Bacterial endospores were enumerated from 79 WRCs spanning 256 – 1122 mbsf 

at Site C0023A. At each depth, the diagnostic endospore biomarker dipicolinic acid 

(DPA) was extracted from WRC sediment in biological duplicates and stored in 4 mL 

Tris buffer (0.2 M, pH 7.6). One replicate was spiked with a 200 nM DPA standard to 

quantify low concentrations of DPA below this detection limit  (Heuer et al., in prep). 

DPA signatures were detected using high performance liquid chromatography (HPLC) 

following an established protocol (Fichtel et al., 2007b), normalized to source sediment 

mass, and converted to spore counts (2.2 × 10-16 mol DPA spore-1) (Fichtel et al., 2007).  

 

4.3.4 16S rRNA gene amplicon sequencing and analysis of inoculum. WRC 

samples intended for DNA extraction were immediately stored upon arrival at KCC at -

80˚C until further processing. DNA was extracted from 5 g of frozen inner WRC material 

using gamma irradiated components of a PowerLyzer PowerSoil DNA Isolation Kit 

following the manufacturer’s instructions (MO BIO Laboratories, Carlsbad, CA USA). 

Isolated DNA was concentrated via ethanol precipitation as previously described (Inagaki 

et al., 2015), eluted into 50 µL 1X TE buffer, and stored at -20˚C until further processing. 

 To determine microbial community composition, V4 regions of bacterial and 

archaeal 16S rRNA genes were PCR-amplified using the 515F/806R universal primer set 
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(Caporaso et al., 2012; Hoshino and Inagaki, 2012; Hoshino and Inagaki, 2017). PCR 

reaction mixtures (25 µL) were prepared using 2× MightyAmp DNA polymerase Ver.3 

and associated dNTP buffer according to the manufacturer’s protocol (TaKaRa Bio, 

Shiga, Japan). Each mixture contained 2 µL template DNA and 0.3 µM forward and 

reverse primers. PCR was initiated on either a Veriti Thermal Cycler or StepOnePlus 

Thermal Cycler (ThermoFisher Scientific) at 98˚C for 2 minutes, followed by 35 

denaturation cycles at 95˚C for 5 seconds, 55˚C annealing cycles for 15 seconds, and 

68˚C extension for 30 seconds. Amplification products were purified using AMPure XP 

beads (Beckman Coulter Inc., Brea, CA USA) and then transferred into a new PCR 

reaction mix containing 515F/806R-MiSeq barcoded primers (Walters et al., 2011) and 

KAPA HiFi Hot-Start DNA polymerase according to the manufacturer’s instructions (F. 

Hoffmann-La Roche, Ltd., Basel, Switzerland). A second PCR amplification was 

performed using an initial denaturation at 95˚C for 3 minutes, followed by 10 cycles of 

30-second denaturation at 95˚C, 30-second annealing at 55˚C, 30-second elongation at 

72˚C, and final elongation at 72˚C for 5 minutes. PCR products were purified twice using 

AMPure XP beads and DNA concentration was measured using a NanoDrop 3300 

fluorospectrometer and PicoGreen (ThermoFisher Scientific). Purified amplification 

products were pooled at equal molar ratios and were sequenced for 600 cycles (2 x 300 

bp) on a MiSeq platform (Illumina Inc., San Diego, CA USA) located at KCC. Microbial 

community profiling was assessed using QIIME v.1.9.1 (Caporaso et al., 2012), where 

operational taxonomic units (OTUs) were clustered with a 97% sequence similarity 

cutoff using UPARSE (Edgar, 2013), and taxonomy was assigned referencing the SILVA 

release 132 database (Quast et al., 2012). The vegan v.2.5-2 package in R (Oksanen et al., 
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2019) was used to assess OTU richness and evenness at each depth, where  Shannon 

diversity indices (H) were calculated following Lemos et al. (2011), 

 
H = –$ (pi ln pi)

n

i =1

 
(4.2) 

where n is the number of OTUs and pi is the proportion of the microbial community 

represented by OTU i.  

A maximum likelihood phylogenetic tree was constructed using RAxML v.8.2.11 

(GTRCAT mode, 100 nonparametric bootstrapping iterations) (Stamatakis, 2014) for 

identified Archaea sequences and 74 reference 16S rRNA gene sequences obtained from 

NCBI GenBank. The deep biosphere bacterium Ca. “Desulforudis audaxviator” MP104C 

(Chivian et al., 2008) was selected as the taxonomic outgroup to root the tree.  

 

4.3.5 Free energy model of AOM reactions at site C0023A. To assess the 

thermodynamic favorability of CH4 metabolisms within the geochemical constraints of 

each investigated depth at Site C0023A, we calculated the in situ Gibbs free energy yield 

(∆Grxn) of hydrogenotrophic methanogenesis, reverse methanogenesis, and five AOM 

redox reactions (Table 4.1; Figure 4.5) using The Geochemists Workbench® v.8.0.5 

(Aqueous Solutions LLC, Champaign, IL USA). For each depth investigated in the high-

pressure AOM tracer study, we calculated ∆Grxn for each metabolism within the 

constraints of the in situ temperature, geochemistry, and dissolved gas concentrations 

reported in the expedition’s data repository, publicly accessible at 

http://sio7.jamstec.go.jp/j-cores.data/370/C0023A/. Aqueous species reported with 

concentrations below the detection limit were assigned with a 0.1 µM value in the model. 

If a measurement was not made for a particular species, the value from the next closest 
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depth was adopted into the model. Pyrolusite (MnO2) and Fe(OH)3 were swapped as solid 

mineral phases of Mn4+ and Fe3+, respectively. Detailed geochemical constraints for each 

depth can be found in Table 4S.3. 

 

Table 4.1. Net redox reactions modeled for Site C0023A. 

H++ HCO3
-  +	4H2 ↔ CH4 +	3H2O 

CH4 + 3H2O ↔ H++ HCO3
-  +	4H2 

SO4
2- + CH4 + H+ ↔ H2S  +  HCO3

-  + H2O 

8NO2
-  + 3CH4 + 5H+ ↔  3HCO3

-  + 4N2 + 7H2O 

8NO3
-  + 5CH4 + 3H+ ↔  5HCO3

-  + 4N2 + 9H2O 

4MnO2 + CH4 + 7H+ ↔ HCO3
-  + 4Mn2+ + 5H2O 

8Fe(OH)3 + CH4 + 15H+ ↔ HCO3
-  + 8Fe2+ + 21H2O 

 

4.3.6 13CH4 tracer microcosm experiment at high hydrostatic pressure. 

Microcosms were set up inside an anaerobic glove bag (Coy Laboratory Products, Grass 

Lake, MI USA) under a 5:95 H2:N2 atmosphere. Fresh aluminum foil was placed on the 

working surface of the glove bag and ethanol-sterilized nitrile gloves were used over the 

glove bag’s butyl rubber gloves to minimize potential contamination of low-biomass 

samples.  The surface of each C0023A WRC was scraped using an ethanol-sterilized 

scalpel to remove sediment exposed to KCC’s anaerobic packaging. For each WCR, ~ 1 

g (wet weight) of freshly exhumed interior sediment was transferred into high-pressure 

modified Hungate tubes (Figure 4.3; Bowles et al., 2011) containing 5 mL anoxic sulfate-

free artificial seawater medium at pH 8.0 (Widdel and Bak, 1992; Holler et al., 2011) and 
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supplemented with 10 mM (final concentration) of one of the following electron 

acceptors: SO4
2-, NO2

- ,	NO3
-  , Mn4+ (in the form of MnO2), or Fe3+ (in the form of 

Fe2O3•H2O), in addition to a no-added oxidant control. Fe2O3•H2O and MnO2 were 

synthesized as previously described (Cornell and Schwertmann, 2003; Händel et al., 

2013). The headspace of each microcosm was replaced with 2:98 13CH4:N2 (1 atm), 

prepared by mixing via gas-tight syringes (Trajan Scientific and Medical, Melbourne, 

Australia) in sealed Tedlar® bags (DuPont, Wilmington, DE USA). An autoclaved kill 

control was included at each assessed depth for both sites as a reference for determining 

significant biological AOM.  All treatments were assessed in biological triplicate.  

 Microcosms were inverted and placed inside stainless-steel hydrostatic vessels 

with a pin-retained piston closure pre-heated in gravity ovens to approximate in situ 

temperatures (Table 4S.1; see Figure 4.1B for reference temperature profile). Vessels 

were sealed and pressurized to 40 ± 0.5 MPa using a hydrostatic pump as previously 

described (Yayanos, 1995) and subsequently returned to gravity ovens for incubation.  

Subsamples of the enrichments were collected at 0, 14, 60, 200, and 350 days to monitor 

CH4 concentrations and the evolution of d13CDIC. Briefly, hydrostatic vessels were 

removed from ovens and depressurized for retrieval of Hungate tube microcosms. From 

each sample, a 500 µl aliquot of the slurry was anaerobically transferred using Ar-

sparged syringes and needles into combusted borosilicate serum vials pre-treated with 

saturated HgCl2 to kill any microbes contained in the sample (Sherwood Lollar et al., 

1993a; Sherwood Lollar et al., 1993b). Vials were sealed under a 100% N2 atmosphere 

with crimped 0.1 NaOH-treated butyl rubber stoppers (Bellco Glass, Inc., Vineland, NJ 

USA). Following sample transfer, serum vials were over-pressurized with N2 gas to 
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minimize the risk of mixing with atmospheric CO2. To exsolve all DIC out of solution, 

vials were supplemented with 100 µL of 0.5 N H3PO4, and heated overnight in a water 

bath at 70˚C. CH4 concentrations and d13CDIC were analyzed from the headspace using a 

Picarro cavity ringdown spectrometer equipped with a G2101-I Isotopic CO2 analyzer 

(Picarro, Inc., Sunnyvale, CA USA). Resulting isotopic values were calculated according 

to  

   d13CDIC= '
!

CDIC 
13

CDIC 
12 "sample

! CDIC 
13

CDIC 
12 "standard

	-1(×1000 ‰   (4.3) 

with respect to the [13C/12C] ratio of the Vienna Pee Dee Belemnite standard. AOM was 

determined to have a significant influence on d13CDIC in a given treatment if its average 

d13CDIC ± standard deviation (SD) was greater than the average d13CDIC + 3 ×	SD of the 

kill control (d13CDICd.kill) for the same depth.  

DIC production rates (rDIC) for each sample were calculated according to  

rDIC !pmol cm-3day-1#=  
"
d13CDICd  –  d13CDICd.kill
d13C13CH4

–  d13CDICd.kill
#DICd$

ρd
gd
%

t
   (4.4)  

where DICd is the sum of 13CDIC and 12CDIC in pmol at depth d, ρd is the bulk density of 

the sediment at depth d in grams cm-3 (http://sio7.jamstec.go.jp/j-

cores.data/370/C0023A/), and gd is the grams of sediment incubated from depth d, and t 

is the number of days of incubation. 
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 4.3.7 Microcosm sample preservation for fluorescent in situ hybridization 

(FISH). Subsamples from 13CH4 tracer microcosms were collected and fixed for 

downstream fluorescent in situ hybridization (FISH). The fluid fraction of C0023A 

Figure 4.3. Piezophilic cultivation 
scheme. A) The bottoms of Hungate tubes 
are removed using a glass cutter and 
replaced with a hand-made piston prepared 
from a butyl rubber stopper. B) Headspace 
is sparged with N2 gas to remove lab air 
following anaerobic addition of sediment 
and media. C) Headspace is replaced with 
N2 atmosphere with 13C-labeled CH4. D) 
Cross-section of stainless-steel hydrostatic 
pressure vessel containing inverted 
Hungate tubes. Pressurization to 40 MPa 
pushes the 13CH4 headspace into solution 
by way of the butyl rubber piston.  
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sediment slurries were centrifuged at 2,000 × g for 5 minutes to pellet planktonic cells. 

The supernatant was pipetted off and cells were fixed according in a 1:1 mixture of 

chilled absolute ethanol and 1× phosphate buffered saline (PBS) and stored overnight at -

20˚C. Fixed samples were then filtered and washed through 0.2 µm polycarbonate 

membrane filters (Whatman International Ltd., Maidstone, UK) using nuclease-free 

water. As a final step, absolute chilled ethanol was filtered through samples, which were 

left to air dry in a laminar flow hood. Filters were stored at -20˚C until further processing. 

 Sediments subsamples from the microcosm experiments were fixed following an 

established protocol (Llobet-Brossa et al., 1998). Freshly prepared, 0.2 µm filtered 

formalin was diluted in filter-sterilized 1× PBS to a final concentration of 4% (v/v). 

Sediment slurries were submerged in the 4% formalin solution for 2 hours at room 

temperature.  Following fixation, samples were centrifuged at 16,000 × g for 5 minutes. 

The supernatant was poured off and sediments were washed 3 times with 1× PBS (pH 

7.6), centrifuging at 16,0000 × g for 5 minutes between washed. After the final washing 

step, fixed sediments were stored in a 1:1 PBS:ethanol mix at -20˚C until further 

processing.  

ANMEs from AOM enrichments were visualized by coupling FISH-TAMB 

(Harris et al., 2017) to 16S rRNA FISH (e.g., Karner and Fuhrman, 1997; Williams et al., 

1998; Christensen et al., 1999; Pernthaler et al., 2002). Briefly, enrichment aliquots were 

anaerobically incubated with 1 µM Cy5-labeled FISH-TAMB probes modified from a 

reverse primer targeting the alpha subunit of methyl coenzyme-M reductase (mcrA) in 

methanogens and ANMEs belonging to the Euryarchaeota (Steinberg and Regan, 2008). 

Following FISH-TAMB treatment, cells were fixed according to the planktonic fixation 
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protocol described above. Samples were hybridized following an established protocol 

(Glöckner et al., 1996) with 50 ng µl-1 dual- labeled oligonucleotide probes (Biomers.net, 

Ulmer, Germany; ATTO-TEC GmbH, Siegen, Germany) specific to Archaea belonging 

to the ANME-1 (Boetius et al., 2000) and ANME-2 (Boetius et al., 2000; Orphan, 2001; 

Hatzenpichler et al., 2016), as well as Candidatus “Methylomirabilis oxyfera” belonging 

to NC-10 Bacteria (Ettwig et al., 2008). Approximate cell counts were obtained by 

counterstaining each filter with 1 µM of the DNA stain 4,6-diaminidino-2-phynylindole 

(DAPI). Probe sequences and associated fluorophores are described in Table 4S.2.  

Cells were imaged using an Olympus BX60 epifluorescence microscope outfitted 

with a mercury burner and a tungsten-halogen lamp for excitation. Cells were imaged in 

brightfield and filtered transmitted light as appropriate for the emission spectra of 

fluorescent dyes (Table 4S.2). Individual filter cube sets were specific to DAPI (352 – 

477 nm), FITC (590 – 650 nm), TRITC (532 – 613 nm), and Texas Red (633-738 nm).  

 

4.3.8 Natural abundance CH4 incubations for metagenomics. Parallel to the 40 

MPa experiments, 0.15 MPa AOM enrichment microcosms were prepared from 257 and 

616 mbsf WRC sediments. For each assessed depth, 10 g (wet weight) triplicates of WRC 

interior sediment were weighed out and transferred into combusted 160-mL borosilicate 

serum vials containing 100 mL anoxic artificial sulfate-free seawater media (Widdel and 

Bak, 1992; Holler et al., 2011). Serum vials were sealed with 0.1 N NaOH-boiled butyl 

rubber stoppers (Bellco Glass, Inc., Vineland, NJ USA) and silver aluminum crimps 

(Supelco Inc., Bellefonte, PA USA), and the headspace was subsequently replaced with 

100% natural abundance CH4 to a final pressure of 1.5 atm (0.15 MPa). Each incubation 
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was supplemented with 10 mM of either SO42-, NO3-, NO2-, Mn4+, or Fe3+ as described 

above. A no-added oxidant control was included to assess endogenous AOM activity 

from remnant oxidants available in the inoculum, and an autoclaved sample was included 

as a kill control. Serum vials containing were incubated upside-down in gravity ovens at 

approximate in situ temperatures (257 mbsf at 40˚C; 616 mbsf at 70˚C). Oxidant 

depletion was monitored using a Dionex IC25 ion chromatograph coupled to an MSQ-

quadruple mass spectrometer (Thermo Scientific, Waltham, MA USA).  

 After 500 days’ continuous incubation, total DNA was extracted from single 

biological replicates from each electron acceptor condition using the Qiagen DNeasy 

PowerSoil Kit (Qiagen Sciences, Inc., Hilden, Germany) and accompanying protocol. 

DNA was concentrated via ethanol precipitation, wherein 0.2 mL of 5M NaCl was added 

to each 5 mL elution and the volume was inverted 5 times to mix. Next, 10.4 mL of 

chilled absolute molecular grade ethanol was added and mixed by gentle inversion 5 

times. Mixtures were centrifuged in 50 mL Falcon tubes (Corning, Inc., Corning, NY 

USA) at 15,000 × g for 30 minutes. Liquid was subsequently decanted, the pellet was 

washed with chilled 70% molecular grade ethanol, and Falcon tubes were left to dry 

inside a UV-irradiated laminar flow hood. DNA was resuspended in 100 µL 1× TE buffer 

and quantified using a Qubit 1× high sensitivity dsDNA assay kit on a Qubit 2.0 analyzer 

following the manufacturer’s instructions (ThermoFisher Scientific, Waltham, MA 

USA). Low DNA yields for several samples (Table 4S.4) resulted in needing to pool and 

re-concentrate DNA via ethanol precipitation again to have enough material for  

metagenomic sequencing.  

Two metagenome libraries, one for 257 mbsf and one for 616 mbsf, comprised 
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AOM enrichments for SO42-, NO3-, NO2-, Mn4+, Fe3+, and no-added oxidant controls,  

were prepared using a PrepX DNA library kit and an automated Apollo 324 system 

(WaferGen Biosystems, Inc., Fremont CA USA). Paired-end (2 x 100 nt) DNA 

sequencing was performed on a HiSeq 2000 platform (Illumina, Inc., San Diego, CA 

USA) located at the Marine Biological Laboratory in Woods Hole, MA USA. Quality 

filtering of sequenced reads and subsequent metagenome assembly and annotation was 

performed as described in Chapter 1.  

 

4.4 RESULTS & DISCUSSION 

4.4.1 AOM reactions are exergonic at site C0023A. Despite significant 

differences in in situ geochemistry (Figure 4.2, Table 4S.3), each investigated depth 

yielded exergonic ∆Grxn values for AOM net reactions coupled to available electron 

acceptors. This included depths greater than 574 mbsf, where the in situ temperature 

exceeds 70˚C, presently the highest temperature where AOM activity has been recorded 

(Holler et al., 2011). Assuming a microbial cell requires a minimum of -20 kJ/mol 2e- 

free energy change from a reaction to generate ATP (Schink, 1997), any inhabitant 

ANMEs at Site C0023A performing AOM would fall either right on the so-called 

“thermodynamic limit” (e.g. sulfate-dependent AOM) or well above it (Figure 4.4). 

Mn(IV)-, nitrite-, and nitrate-dependent AOM reactions were highly exergonic (≤ -100 

kJ/mol 2e- ) throughout the depth profile, even when the coupled electron acceptor was 

limiting (e.g. 0.1 µM inputs for NO2
-  or	NO3

- ). Fe(III)-dependent AOM also proceeded 

favorably at each investigated depth.  
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High concentrations of  CH4 with depleted carbon isotopic signatures (δ13CCH4)  

were available throughout much of the depth profile (Figure 4.2A). At depths shallower 

than ~700 mbsf, the δ13CCH4 averaged -61.3 ± 3.0 ‰, indicating formation via biogenic 

methanogenesis (Figure 4.2A). This interpretation is consistent with our thermodynamic 

model’s predictions that hydrogenotrophic methanogenesis had free energy yields above 

 

Figure 4.4. ∆Grxn for 
hydrogenotrophic 
methanogenesis, 
reverse 
methanogenesis, and 
five proposed AOM 
pathways coupled to 
known mediating 
electron acceptors at 
Site C0023A. 
Geochemical 
constraints for each 
investigated depth were 
derived from the IODP 
Expedition 370 post-
cruise report. Optimal 
growth temperatures of 
the most heat-tolerant 
methanogen, 
Methanopyrus kandleri 
strain 116 (Takai et al., 
2008), and ANME 
phylotype (ANME-1-
Guayamas II) (Holler et 
al., 2011) are 
referenced by colored 
dashed lines at their 
respective highest 
recorded temperatures. 
Line at 70˚C represents 
known upper 
temperature limit of 
AOM activity (Holler 
et al., 2011). 
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the thermodynamic limit (with the exception of two depths, 414 and 583 mbsf) (Figure 

4.4). A positive excursion of the δ13CCH4 peaking around ~730 mbsf coincides with a 

deep sulfate-methane transition zone (SMTZ) (Figure 4.2A,D), and has been interpreted 

as isotopic evidence for in situ thermophilic sulfate-dependent AOM (Heuer et al., in 

prep). For the depths investigated in our high pressure incubations, the ∆Grxn of sulfate-

dependent AOM stays relatively constant on the thermodynamic limit (Figure 4.4). 

Previous studies have shown this phenomenon is closely tied to competition between 

hydrogenotrophic microorganisms for H2 in anoxic marine sediments, forcing terminal 

metabolic reactions utilizing the most predominant electron acceptors to operate right at 

the thermodynamic limit (Lovley et al., 1982; Lovley and Goodwin, 1988; Hoehler et al., 

1994; Hoehler et al., 1998). This is certainly reflected in the geochemistry of C0023A. 

For each depth assessed in our thermodynamic model, sulfate was the most abundant 

electron acceptor and H2 concentrations were low (nM range) relative to other intervals 

of the depth profile (Figure 4.2C,D; Table 4S.3).  

The large free energy yields of many of these reactions confirmed our 

expectations that AOM should be possible under high temperature and pressure 

conditions, even when the oxidant coupled to AOM is in low concentration (e.g. 100 

nM). Based on the results of this model, we anticipated observing isotopic evidence of 

AOM activity (i.e. 13C enrichment of the DIC pool) at all depths in our high-pressure 

incubation experiment.  

 

4.4.2 Distributions of vegetative cells and endospores at site C0023A. Initial cell 

counts from WRC sediments yielded in situ cell concentrations several order of 
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magnitude lower than previous reports from nearby Site 1174, drilled during ODP Leg 

190 (Moore et al., 2001). At site C0023A, intact vegetative cells were detectable 

throughout the depth profile in very low abundance (< 104 cells cm-3) down to ~ 600 

mbsf, beyond which counts were lower than the minimum quantitative limit (MQL) (10 

cells) to be statistically meaningful. Cell concentrations rose above the MQL just above 

the décollement ~ 800 mbsf (Figure 4.1B) (Heuer et al., 2017). Initial cell counts for 

WRC sediment analyzed in this study were highest in sediments from 257 mbsf (~ 2.31 

×	104 cells cm-3) but dropped within the range of 102 or fewer cells cm-3 (Table 4.2) for 

all other investigated depths. The meaningful quantitative limit (MQL) was defined as 10 

cells, and the sediment sample from 616 mbsf recorded the minimum detection limit 

(MDL) of 1 cell, falling within a putative “lifeless zone” at depths between ~70 – 75˚C. 

This drop in microbial abundance co-occurs with the lithological boundary of the Upper 

and Lower Shikoku Basins (Units III and IV, respectively), where an abundance of tuff 

layers, mechanical strengthening of the formation, and increased porewater Li+ 

concentrations point to in situ mineral alteration, possibly driven by hydrothermal fluid 

flow from a deeper source (Heuer et al., in prep; Horsfield et al., 2006).   

Whereas vegetative cell counts drop by more than two orders of magnitude below 

257 mbsf, bacterial endospores remain in high abundance (~105 endospores cm-3) down 

to 574 mbsf. At depths of 574, 616, and 865 mbsf, endospore estimates drop below the 

methodological detection limit of 2.2 × 104 spores cm-3, but in between rise above 105 

spores cm-3 just above the décollement at 659 mbsf (Table 4.2). Rates of microbial bio- 

and necromass turnover in the deep sub-seafloor have been shown to be significantly 

influenced by temperature. Recent model calculations of D:L aspartic acid racemization 
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have estimated surprisingly fast vegetative cell turnover times in deeply buried, 1.4 

million year-old marine sediments from the Peru Margin – on the order of years to 

decades  (Braun et al., 2017). However, at 2.4˚C, these sediments are significantly colder 

than the comparatively hotter and older sediments of site C0023A in the Nankai Trough, 

which span back ~13-16 million years to the middle Miocene (Morono et al., 2017; 

Hagino, 2018). Turnover times for vegetative cells in hydrothermal sediments, such as 

those from the Guaymas Basin, have been estimated to be on the order of only days to 

months (Møller et al., 2018). Liang et al.'s (2019) investigation of aspartic acid 

racemization rates in the thermophilic spore-former Geobacillus stearothermophilus 

demonstrated a complete loss of viability of spores within 125 days at their optimal 

growth temperature (65˚C) and within only 3 days at 95˚C. Thus, the identification of 

bacterial endospores from high temperature, multi-million year-old regimes at site 

C0023A likely indicates recent sporulation. While the potential for recent geological 

processing as described above offers one explanation for the high ratio of endospores to 

vegetative cells, an alternative interpretation is that sporulation was triggered by the 

stresses of the drilling process, such as significant temperature changes and 

depressurization upon arrival on deck.  
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Table 4.2. In situ cell concentrations of WRC samples incubated in the high 
hydrostatic pressure tracer experiment. Values reported as direct microscopic counts of 
SYBR-I stained cells. Abbreviations: BMQL, below meaningful quantitative limit (10 
cells cm-3); BEDL, below endospore detection limit (2.2 × 104 spores cm-3).  

Depth (mbsf) In situ Temp (˚C) Approx. vegetative 
cells (±	10) cm-3 

Approx. 
endospores cm-3 

257 37.6 2.31 × 104 3.73 ± 1.5 × 104 
414 53.7 36 1.3 ± 0.5 × 105 
429 55.2 26 1.8 ± 0.4 × 105 
496 61.7 6BMQL 10 ± 4 × 104 
574 69.2 155 BEDL 
583 70 155 BEDL 
616 73.1 1BMQL BEDL 

659 77.1 28 6.2 ± 0.1 × 105 
865 95.2 8BMQL BEDL 

 

4.4.3 Observations of trace AOM at high hydrostatic pressure. The starting 

isotopic composition of sediment slurries, recording d13CDICd  values between 

approximately -14‰ to -26‰.  These values were more negative than the d13CDIC of the 

artificial seawater media (-11.61± 1.3 ‰; [DIC] = 10 µM) (Figure 5), indicating in situ 

sediment porewater DIC (which was not measured in this study) must be comparatively 

depleted in 13C.  

Positive d13CDICd excursions were observed for 29 out of 54 investigated electron 

acceptor conditions (excluding the kill controls) for the duration of the incubation, 

demonstrating the highest average d13CDICd for a majority of conditions at 350 days 

(Figure 4.5). Across all investigated electron acceptors, samples from 659 mbsf showed 

the largest excursion average relative to its starting isotopic composition. Nitrate-

incubated samples from 659 m also yielded the largest overall enrichment, with its 

d13CDIC increasing 24.63 ± 5.01‰	from the start of the experiment. This depth is also 

proximal a +10‰ excursion of the in situ d13CCH4 (Figure 4.2A), which has been 
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interpreted to also be strongly suggestive of thermophilic biological AOM (Heuer et al., 

in prep).  

 

Figure 4.5. Average d13CDIC ±SD of C0023A sediments after 350 days’ incubation at 
40 MPa under in situ temperature conditions. Time 0 d13CDICd

 ± SD of unamended 
sediment slurries are indicated by white circles. Significant biological AOM was 
determined when d13CDICd

 ± SD > d13CDICd.kill ± 3 × SD. Significant values are each 
investigated depth are highlighted within green bars. d13CDIC ± SD of sulfate-free 
artificial seawater medium is indicated in violet.  
 

 

While the most positive d13CDICd were generally observed at the end of the 

experiment, the rDIC values were greatest within the first 14 days of incubation, with the 
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highest rate of production occurring in Fe(III)-amended slurries from 429 mbsf (rDICmax = 

3.3	± 1.3 × 10-3 pmol cm-3 day-1) (Figure 4.6; Table 4S.5). With the exception of samples 

from 616 mbsf, net AOM DIC production was observed throughout the depth profile, 

most prolifically in microcosms supplemented with Fe(III), Mn(IV), or NO2
-  (n = 6 

depths each). We observed high replicability of rDIC across biological replicates, with 

standard deviations of mean rDIC < 0.3 pmol cm-3 day-1.  

 

 

 

Figure 4.6. Rates of AOM DIC production (rDIC) after 14 days’ 
incubation in C0023A sediments. Rates calculated relative to the 
kill control at each depth according to equation (5). Gray bar 
represents 95% confidence interval of production relative to kill 
controls. SD values are smaller than point size (< 0.3 pmol cm-3 
day-1).  
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Net AOM DIC production was also observed at 14 days in NO3
-  supplemented 

samples (n = 3), while SO4
2- and the no added electron acceptor control only demonstrated 

significant production in microcosms from 865 mbsf (Figure 4.6). AOM DIC production 

rates began to slow by the second sampling point at 60 days, with rates of production at 

257 mbsf at least one order of magnitude greater than samples from other depths (rDICmax 

= 1.26 ± 0.02 pmol cm-3 day-1, Mn(IV)-enrichment, 257 mbsf) (Table 4S.5). 

Measurements made at 200 and 350 days showed rates of production < 0.2 pmol cm-3 

day, again, with the highest rates being reported in 257 mbsf sediment slurries (Table 

4S.5).  

While it is difficult to disambiguate the relative contributions of AOM and other 

heterotrophic metabolisms to the DIC pool, the distribution and magnitude of metabolic 

rates reported in this study are generally consistent with radiotracer-inferred rates of 

hydrogenotrophic methanogenesis in C0023A sediments, which averaged < 1 pmol cm-3 

day below depths where the temperature exceeded ~50˚C (Heuer et al., in prep; Figure 

4S.7E). We note that the maximum AOM DIC rates reported from 429 mbsf Mn(IV)- and 

Fe(III)-amended slurries are respectively 2-3× greater than the maximum rate of 

methanogenesis reported for the same range of depths (Figure 4S.7E). The AOM rates 

observed at high hydrostatic pressure in this study are consistent with findings of other 

high pressure AOM tracer studies (Bowles et al., 2011; Timmers et al., 2015), and thus 

supportive of the existence of thermo-piezotolerant ANMEs. Future experiments 

employing other methodologies such as radiotracers or metatranscriptomics, ideally on 

more biomass-rich samples, are necessary to more definitively assess this question.   
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4.4.4 16S rRNA gene diversity and metagenomics of site C0023A.  A survey of 

16S rRNA gene amplicon sequencing was performed on WRC samples spanning the 

depth profile at Site C0023A. A total of 535,679 quality-filtered amplicon sequences 

were recovered from WRC sediment samples relevant to our high pressure AOM tracer 

study. By comparison, a total of 31,255,507 and 6,209,754 quality-filtered reads were 

generated from 257 mbsf and 616 mbsf metagenome libraries.  

A comparison of Shannon indices of 16S rDNA showed a range of low microbial 

diversity at the phylum level, ranging from 0.91 at 429 mbsf to 1.95 at 257 mbsf (Figure 

4.7). Proteobacteria disproportionately dominated community composition at every 

depth, ranging from 63% relative abundance at 257 mbsf to 82.7% at 659 mbsf.  (Figure 

4.7).  With the exception of 257 mbsf, where Chloroflexi were abundant (17%), 

Actinobacteria and endospore-forming Firmicutes were the second- and third-most 

abundant phyla present throughout the depth profile. The detection of Firmicutes in high 

relative abundance in multi-million year-old sediment is also consistent with the 

interpretation of recent sporulation, as DNA from long-dormant cells would degrade after 

prolonged exposure to high in situ temperatures (Liang et al., 2019). Nine candidate 

bacterial phyla were also present at ≥ 0.1% relative abundance, several of which (e.g. Ca. 

“Aerophobetes”, Ca. “Sumerlaeota”, Ca. “Atribacteria”, Ca. “Armatimonadetes”) are 

endemic to the deep sub-seafloor. 
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A total of 49 16S rDNA sequences were identified as Archaea and were 

recovered from only three depths:  257 (47 sequences), 414 (1 sequence), and 583 mbsf 

(1 sequence). The two most abundant phyla represented amongst archaeal sequences 

were the Euryarchaeota (1.3% total relative abundance; 64% of Archaea) and 

Candidatus “Bathyarchaeota” (0.9% total relative abundance; 36% of Archaea). The 

 

Figure 4.7. In situ microbial community composition at the phylum level for site 
C0023A OTUs with ≥ 0.1% relative abundance. Phylum-level richness and evenness at 
each depth is represented by its Shannon diversity index (H). 
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candidate class Ca. “Hadesarchaea” accounted for 92.5% of Euryarchaeota assignments. 

Conspicuously, we did not identify any sequences belonging to known methanogenic or 

ANME phylotypes from the 16S rRNA gene survey. While this may imply that ANMEs 

are not present at the depth intervals investigated in this study, several factors may 

explain their apparent absence from amplicon libraries. Known biases of the 515F/806R 

universal primer set against several archaeal clades, including whole phyla such as the 

Crenarchaeota and Thaumarchaeota (Hugerth et al., 2014) occur, but also for the 

ANME-encompassing orders Methanosarcinales and Methanomicrobiales (Trembath-

Reichert et al., 2016). Significant underestimations of the relative abundance of 

Euryarchaeota in amplicon libraries have previously been associated with low 16S rRNA 

gene copy numbers in methanogenic orders relative to other clades (Campanaro et al., 

2018) and to Bacteria (Kembel et al., 2012).  

A maximum likelihood tree of Site C0023A Archaea aligned to 16S rRNA gene 

sequences of reference genomes and deep biosphere lineages confirmed this apparent 

absence of canonical euryarchaeal ANMEs (Figure 4.8). However, metagenomics of 257 

and 616 mbsf 0.15 MPa enrichments did reveal much greater microbial diversity, though 

Archaea still comprised < 1% of community composition at both depths (Appendix C, 

file 4C.1.html for 257 mbsf and 4C.2.html for 616 mbsf). We identified 17 sequences at 

257 mbsf and 13 sequences at 616 mbsf belonging to the methanogenic euryarchaeal 

class Methanomicrobia at 257 mbsf  (Figure 4.9A), including, at both depths, members of 

the ANME-2d family Ca. “Methanoperedenaceae”, which have been described to 

independently couple AOM to nitrate, ferric iron, and manganese reduction (Haroon et 

al., 2013; Cai et al., 2018; Leu et al., 2020). We were also able to recover two sequences 
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belonging to the nitrite-reducing anaerobic methanotrophic bacterium, Ca. 

“Methylomirabilis oxyfera” (Figure 4.9B; Ettwig et al., 2010).   

From the 16S rDNA survey we also identified two Ca. “Bathyarchaeota” OTUs, 

257m.5F.3_2461 and 257m.5F.3_11668, belonging to the same clade as Ca. 

“Bathyarchaeota” archaeon BE326-BA-RLH, a putatively denitrifying anaerobic 

methanotroph characterized from a South African ultra-deep mine (Figure 4.8; Chapter 3; 

Harris et al., 2018). BLASTn pairwise alignments of 257m.5F.3_2461 and 

257m.5F.3_11668 to Ca. BE326-BA-RLH respectively yielded 89.33% and 90.5% 

sequence similarity (E-values 4e-96 and 2e-100). With respect to each other, 

257m.5F.3_2461 and 257m.5F.3 were 96.44% similar (E-value 3e-121), suggesting these 

amplicons belong to the same genus, if not also the same species, according to the 

arbitrary 97% 16S rRNA gene sequence similarity cutoff for species delineation 

(Stackebrandt and Goebel, 1994). While similar 16S rRNA gene phylogeny does not 

necessarily beget CH4 metabolisms in these two OTUs, their identification does warrant 

continued investigation into the potential role Ca. “Bathyarchaeota” play in deep sub-

seafloor hydrocarbon cycling, including the oxidation of higher alkanes (e.g., Wang et al., 

2019). Notably, the majority of Ca. “Bathyarchaeota” sequences recovered from both 

metagenomes belong to Subgroup-3 (Figure 4.9C). This clade includes the methanogens 

Ca. “Bathyarchaeota” BA1 and BA2, of which 13 and 14 sequences were respectively 

identified from the 257 mbsf metagenome (Figure 4.9C).  
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Figure 4.8. Phylogenetic diversity of 123 aligned 16S rRNA gene sequences belonging 
to Archaea amplified from Site C0023A WRC sediment (red text), reference genomes, 
and deep biosphere lineages. Nonparametric bootstrap values are shown as white (≥ 
70%) and black (≥ 90%) circles at designated nodes. Ca. “Bathyarchaeota” lineages 
with metagenomic evidence for CH4 metabolism are denoted by blue text. Ca. 
“Desulforudis audaxviator” MP104C (CPP00860.1) used as taxonomic outgroup 
(denoted as Bacteria). NCBI accession numbers and either environmental context or 
genome name provided for reference sequences. 
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Figure 4.9. Putative CH4-metabolizing taxa belonging to (A) Methanomicrobia, (B) 
Candidate Division NC10, and (C) Candidatus “Bathyarchaeota” recovered from 257 
mbsf and 616 mbsf metagenomes (0.15 MPa enrichments). Numbers in brackets refer 
to number of sequences recovered belonging to that taxonomic classification. 
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13CH4-incubated sediments. We were able to photomicrograph from a sulfate-

supplemented 257 mbsf microcosm at 350 days an isolated example of what appeared to 

be a single cell (identified by DAPI staining, Figure 4.10B) that fluoresced with our 

ANME-1-specific 16S rRNA FISH (Figure 4.10C) and mcrA FISH-TAMB dyes (Figure 

4.10D). Contrasting with the 16S rRNA gene survey, which presented the microbial 

community from the lens of amplified DNA, our FISH probes hybridize to RNA, offering 

a more faithful representation of the active metabolic landscape.  

 
Figure 4.10. Photomicrographic evidence of ANME-1 from 257 mbsf, Site C0023A 
in 40 MPa microcosms supplemented with 10 mM sulfate and 13CH4. (A) transmitted 
light, (B) DAPI stain, (C) 16S rRNA FISH (D) and FISH-TAMB targeting 
euryarchaeal mcrA mRNA (E). Magnification 100×. Scale bar 5 µm. 

 

The bright fluorescence intensity of the imaged cell with both 16S rRNA- and 

mcrA mRNA-specific probes is potentially indicative of very high transcriptional 

activity. Large transcript to gene copy number ratios appear to be characteristic of CH4-

metabolizing Euryarchaeota, particularly with genes involved in the methanogenesis 

A

DC

B
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pathway (Zakrzewski et al., 2012; Bremges et al., 2015; Lau et al., 2016; Campanaro et 

al., 2018; Chapter 5 of this dissertation). ANME-1 have also been found without 

syntrophic partners (see Timmers et al., 2017 and references therein). Given the 

established specificity of the 16S rRNA probe sequence to ANME-1 (Boetius et al., 

2000), as well as the consistent planktonic, rod-shaped morphology (Cui et al., 2015), we 

consider these images to be representative of a true positive detection of active ANME-1 

enriched at 40 MPa.  

 

4.5 CONCLUSIONS 

4.5.1 The high-temperature, high-pressure deep biosphere as a new frontier for 

AOM research. The gradual thermal gradient and diverse geochemical landscape of the 

Nankai Trough subduction zone provide excellent opportunities to assess the limits of 

microbial life in the deep hot biosphere. Photomicrographic evidence of ANME-1 in 

sulfate-supplemented sediment slurries recovered from 257 mbsf, the identification of 

ANME, Ca. “M. oxyfera”, and Subgroup-3 Ca. “Bathyarchaeota” from metagenomics, 

and  the identification of 16S rDNA OTUs closely related to Ca. “Bathyarchaeota” 

BE326-BA-RLH support the presence of piezotolerant AOM. This study presents stable 

isotopic evidence of microbially-mediated AOM proceeding in deep sub-seafloor 

sediments enriched at 40 MPa and temperatures of up to 80˚C, the highest combinatorial 

pressure and temperature at which AOM has been inferred in vitro to date. 
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4.6 DATA AVAILABILITY 

Expedition 370 drilling records and associated core analyses, including 16S rRNA 

gene amplicon data, from Site C0023A are publicly available for download through the 

JCORES data base at  http://sio7.jamstec.go.jp/j-cores.data/370/C0023A/. Raw isotopic 

data, photomicrographs, and code generated by this study are available upon request. 

Metagenomic sequencing data are available on request until the publication of this 

chapter at which time it will be available on NCBI GenBank. 
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13CH4 tracer experiments. 
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4.9 SUPPLEMENTARY INFORMATION 
 
Table 4S.1. Source core material for sediment samples incubated in high pressure 
13CH4 tracer experiment. Incubation temperatures juxtaposed to in situ temperature 
conditions calculated from equation (4.1).  

Sample Source 
Core 

Top Depth 
(mbsf) 

In situ Temp (˚C) Incubation Temp (˚C) 

C0023A-5F-2 257.285 37.6 40 
C0023A-16R-4 414.85 53.7 50 
C0023A-18R-2 429.21 55.2 50 
C0023A-25R-3 496.365 61.7 60 
C0023A-35R-1 574.45 69.2 60 
C0023A-36R-1 583 70 60 
C0023A-39R-5 616.865 73.1 70 
C0023A-44R-2 659.63 77.1 70 & 80 
C0023A-83R-4 865.81 95.2 80 
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Table 4S.2. FISH-TAMB and 16S rRNA FISH probe sequences used in this study. 

Probe Name 
(Methodology) 

5’ Reporter;  
3’ Quencher/Reporter Sequence (5’ – 3’) Reference(s) 

Eury_mcrA_rev 
(FISH-TAMB) 

Cy5; BHQ3 CCTGGCGTTCAT-
BGCGTAGTTVGG

-RTAGTCCAGG 

(Steinberg and 
Regan, 2008; 
Harris et al., 

2017) 

ANME-
2_EelMS_932 

(16S rRNA FISH) 

Atto 565; Atto 565 AGCTCCACCCGT-
TGTAGT 

(Boetius et al., 
2000; Orphan, 

2001; 
Hatzenpichler et 

al., 2016) 
ANME-1_350 

(16S rRNA FISH) 
Atto 425; Atto 425 AGTTTTCGCGCC-

TGATGC 
(Boetius et al., 

2000) 
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Table 4S.3. Site C0023A in situ geochemistry for AOM free energy model. Inputs derived 
from expedition bulk porewater chemistry and dissolved gas reports 
(http://sio7.jamstec.go.jp/j-cores.data/370/C0023A/). Abbreviations: n.e., no entry; †assigned 
last recorded pH in depth profile; 0.1 µM, default entry if measurement was reported as 
below detection limit; 1 free g, default entry for hard mineral phases. 

Depth 
(mbsf) 

257 414 429 496 574 583 616 659 865 

Temp 
(˚C) 

37.6 53.7 55.2 61.7 69.2 70 73.1 77.1 95.2 

H+ (pH) 7.99 8.02 7.67 7.73 7.54† 7.54† 7.54† 7.54† 7.54† 
Cl- (mM) 560.67 580.87 579.29 554.22 551.60 544.71 520.70 486.38 467.11 

H2S (µM) 0.40 0.1 0.1 0.1 0. 1 0.1 0.1 0.1 0.40 

Fe(OH)3 
(free g) 

1 1 1 1 1 1 1 1 1 

Pyrolusite 
(free g) 

1 1 1 1 1 1 1 1 1 

CH4 
(mM) 

1.87 5.83 0.30 1.47 1.83 4.49 3.08 1.48 0.18 

Fe2+(µM) 2.08 0.12 24.48 23.87 59.58 9.38 2.03 0.40 0.81 

Mn2+ 
(µM) 

0.1 7.20 20.16 40.19 22.95 19.45 7.37 12.10 101.74 

HCO3- 
(mM) 

15.32 7.25 7.76 2.99 2.05 2.05 0.99 0.99 7.77 

NO2- 
(µM) 

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

NO3- 
(µM) 

11.71 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

SO42- 
(mM) 

2.22 0.55 0.55 0.68 0.487 1.36 0.92 0.86 5.64 

H2 (µM) 0.002 1.13 0.49 0.02 0.02 0.004 0.36 0.81 0.39 
NH4+ 
(mM) 

6.85 3.65 3.17 1.48 1.12 1.01 0.91 0.89 0.30 

Na+ (mM) 511.63 529.90 524.64 493.82 489.80 487.04 462.30 445.58 415.35 

Br– (mM) 1.06 1.08 1.11 1.02 1.02 1.00 0.93 0.86 0.82 

K+ (mM) 7.53 4.74 4.90 2.27 2.00 1.96 1.48 0.87 0.72 
Mg2+ 
(mM) 

13.39 6.04 5.53 4.37 2.94 2.66 1.43 2.33 2.73 

Ca2+ 
(mM) 

9.23 15.35 17.55 20.97 23.14 23.92 24.21 22.76 33.87 

Li+ (µM) n.e. 148.66 186.53 330.05 600.18 614.24 492.82 349.78 665.42 
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Table 4S.4. DNA yields from 0.15 MPa  microcosm experiments. Abbreviations: bdl, 
below detection limit; NAO, no added oxidant 
 

Depth (mbsf) Condition ng/µL 
257 [Extraction blank] bdl 

 NAO 0.064 
 Sulfate 0.046 
 Fe(III) 0.052 
 Mn(IV) 0.051 
 Nitrite 7.16 
 Nitrate 2.83 
 Kill bdl 
 Pooled Library 3.46 

616 [Extraction blank] bdl 
 NAO 0.03 
 Sulfate bdl 
 Fe(III) bdl 
 Mn(IV) 0.04 
 Nitrite 0.04 
 Nitrate bdl 
 Kill bdl 
 Pooled Library 0.04 
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Table 4S.5. Rates of new AOM DIC production, rDIC, since previous sampling point in pmol cm-3 day-1. Values calculated 

according to equation (4.4). Abbreviations: NAO, no added oxidant control; K, kill control; -, replicate lost during 

depressurization. 

  14 days 60 days 200 days 350 days 

Sample ID rDIC SD rDIC SD rDIC SD rDIC SD 

257m_NAO_40C 1.62E-01 1.65E-01 9.08E-02 5.62E-02 6.44E-03 3.43E-03 1.59E-01 1.77E-02 

257m_K_40C 0.00E+00 2.66E-02 0.00E+00 3.09E-03 0.00E+00 2.62E-04 0.00E+00 2.09E-03 

257m_SO42-_40C 1.73E-02 2.92E-02 6.74E-01 5.19E-02 1.93E-03 1.94E-02 4.62E-02 3.23E-02 

257m_NO2-_40C -9.89E-03 1.61E-03 6.08E-01 2.98E-02 7.80E-03 1.39E-01 -1.99E-02 3.36E-02 

257m_NO3-_40C 2.41E-01 3.84E-02 1.13E+00 1.03E-01 4.82E-02 1.62E-02 -2.60E-02 9.65E-03 

257m_MnO2_40C 2.47E-01 2.99E-03 1.26E+00 2.02E-02 -9.92E-03 8.38E-02 1.32E-01 5.38E-02 

257m_Fe2O3_40C 1.19E+00 1.95E-03 1.03E+00 2.43E-02 -7.18E-02 1.40E-02 1.72E-01 1.35E-02 

414m_NAO_50C -7.68E-01 2.88E-05 -1.52E-06 4.06E-07 4.48E-08 6.91E-08 6.76E-08 6.39E-08 

414m_K_50C 0.00E+00 1.44E-08 0.00E+00 1.28E-08 0.00E+00 1.04E-08 0.00E+00 8.84E-09 

414m_SO42-_50C 3.56E-01 8.71E-07 -3.13E-06 7.84E-07 -5.62E-08 4.80E-08 -3.49E-08 2.31E-08 

414m_NO2-_50C 2.75E-01 3.53E-05 -6.64E-06 8.84E-07 -4.14E-07 4.63E-07 -4.23E-07 3.96E-07 

414m_NO3-_50C 1.94E-01 4.29E-06 -2.78E-06 4.96E-07 9.36E-07 3.60E-07 4.88E-07 3.52E-07 

414m_MnO2_50C 1.09E+00 1.73E-06 -3.62E-06 1.21E-06 1.49E-07 2.77E-08 1.07E-06 6.36E-08 

414m_Fe2O3_50C -1.69E+00 5.42E-05 -2.34E-06 2.76E-06 -3.00E-07 1.54E-06 -4.38E-09 4.88E-07 

429m_NAO_50C -2.30E+00 4.47E-06 3.52E-06 2.21E-07 -9.98E-07 2.03E-06 1.53E-07 1.98E-06 

429m_K_50C 0.00E+00 5.33E-08 0.00E+00 5.25E-08 0.00E+00 4.97E-08 0.00E+00 2.54E-09 

429m_SO42-_50C -1.18E+00 2.14E-06 6.27E-06 2.83E-06 -4.81E-07 4.41E-07 -1.31E-06 4.10E-07 

429m_NO2-_50C -8.98E-01 1.34E-05 1.56E-06 2.59E-06 -7.35E-08 5.13E-07 8.98E-08 8.14E-07 

429m_NO3-_50C 3.83E-02 1.44E-06 4.80E-06 5.37E-07 -9.26E-07 8.27E-07 -3.85E-07 1.09E-06 

429m_MnO2_50C 2.65E+00 1.15E-04 -9.28E-07 3.61E-06 -4.50E-07 6.68E-08 6.53E-07 1.59E-07 

429m_Fe2O3_50C 3.29E+00 1.28E-05 2.09E-06 2.57E-07 -7.02E-07 6.25E-07 5.07E-08 9.04E-07 

496m_NAO_60C -2.35E-01 2.34E-03 -1.18E-03 1.51E-03 -2.46E-04 5.61E-04 3.23E-04 8.45E-04 
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496m_K_60C 0.00E+00 1.22E-07 0.00E+00 3.26E-04 0.00E+00 1.92E-04 0.00E+00 1.77E-04 

574m_NAO_60C -1.80E-01 4.28E-04 1.80E-03 6.97E-05 4.31E-05 3.22E-03 1.40E-03 3.52E-03 

574m_K_60C 0.00E+00 1.08E-05 0.00E+00 2.91E-05 0.00E+00 8.06E-05 0.00E+00 1.61E-04 

583m_NAO_60C -1.68E-01 3.72E-03 4.00E-03 5.18E-05 3.23E-05 1.02E-04 8.11E-04 9.06E-05 

583m_K_60C 0.00E+00 2.11E-05 0.00E+00 8.45E-05 0.00E+00 1.16E-04 0.00E+00 3.21E-03 

496m_SO42-_60C -2.54E+00 8.25E-04 - - - - - - 

496m_NO2-_60C 7.99E-01 2.33E-03 -5.42E-03 2.19E-04 1.28E-03 2.82E-04 4.54E-03 3.29E-03 

496m_NO3-_60C 8.83E-02 4.27E-03 1.96E-04 3.23E-04 -8.05E-04 3.47E-04 1.12E-03 5.73E-04 

496m_MnO2_60C 1.18E+00 2.92E-04 1.28E-03 3.48E-03 -1.04E-03 1.05E-03 -7.73E-06 9.13E-04 

496m_Fe2O3_60C 7.79E-01 4.13E-03 -1.42E-03 1.34E-03 -3.12E-04 7.90E-04 2.36E-03 4.29E-04 

574m_SO42-_60C -9.65E-02 1.97E-04 5.02E-03 8.75E-03 0.00E+00 6.36E-04 0.00E+00 5.27E-05 

574m_NO2-_60C 1.07E+00 3.46E-03 2.60E-03 1.68E-03 2.21E-03 2.24E-03 2.22E-02 1.86E-03 

574m_NO3-_60C 8.76E-01 1.82E-04 1.25E-03 1.55E-03 -1.81E-05 3.50E-03 6.61E-02 6.03E-03 

574m_MnO2_60C 5.99E-01 5.16E-03 1.30E-03 1.95E-03 -3.92E-04 4.42E-04 3.88E-02 1.09E-02 

574m_Fe2O3_60C 1.13E+00 1.24E-04 -2.68E-03 3.69E-03 1.37E-03 3.13E-03 7.17E-03 3.83E-02 

583m_SO42-_60C -1.89E-01 2.33E-03 3.20E-03 9.01E-05 -1.42E-03 1.18E-04 7.13E-03 1.73E-04 

583m_NO2-_60C 4.05E-01 7.28E-03 2.53E-03 4.14E-03 1.84E-03 2.44E-03 9.81E-03 2.27E-03 

583m_NO3-_60C 5.79E-01 2.41E-03 -4.51E-03 1.20E-04 -1.13E-03 4.20E-04 1.54E-03 1.66E-03 

583m_MnO2_60C 7.80E-01 6.82E-03 6.92E-05 7.24E-05 -1.32E-04 9.05E-04 1.05E-02 8.31E-04 

583m_Fe2O3_60C 1.38E+00 3.31E-03 -6.84E-04 3.76E-04 -4.96E-04 2.40E-04 -4.51E-03 1.38E-03 

616m_NAO_70C -7.13E-01 1.94E-03 2.84E-02 3.21E-03 -1.50E-02 4.89E-04 3.87E-02 1.36E-04 

616m_K_70C 0.00E+00 2.89E-04 0.00E+00 1.21E-04 0.00E+00 3.13E-05 0.00E+00 3.00E-05 

616m_SO42-_70C -8.93E-01 1.46E-03 -6.63E-04 3.53E-04 4.65E-03 1.73E-04 6.52E-03 1.77E-04 

616m_NO2-_70C -4.84E-01 1.87E-03 6.62E-02 2.48E-03 -2.30E-02 2.09E-03 -3.51E-03 1.53E-03 

616m_NO3-_70C -4.69E-01 2.04E-04 -2.57E-04 5.29E-04 7.24E-04 3.02E-05 -6.89E-04 1.44E-04 

616m_MnO2_70C -5.17E-01 3.20E-03 -1.60E-03 6.42E-03 -3.23E-03 1.77E-04 8.38E-03 2.48E-04 

616m_Fe2O3_70C -5.36E-01 1.11E-02 -3.67E-04 3.71E-03 -3.19E-03 1.43E-04 6.63E-03 7.41E-04 
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659m_NAO_70C -2.81E+00 - - - - - - - 

659m_K_70C 0.00E+00 1.13E-04 0.00E+00 9.33E-05 0.00E+00 1.64E-04 0.00E+00 3.23E-04 

659m_SO42-_70C -2.81E+00 4.22E-03 1.01E-03 2.09E-04 1.51E-03 1.11E-04 -1.63E-02 1.04E-04 

659m_NO2-_70C -1.62E+00 2.41E-04 2.01E-03 6.62E-04 -3.33E-03 1.46E-05 -1.06E-03 1.73E-05 

659m_NO3-_70C -1.52E+00 1.77E-04 1.97E-03 6.90E-04 -3.68E-03 7.73E-05 -6.21E-04 6.80E-05 

659m_MnO2_70C -1.48E+00 5.60E-04 -7.14E-03 2.61E-03 -1.32E-03 6.58E-05 -4.21E-03 2.91E-05 

659m_Fe2O3_70C -1.46E+00 4.29E-03 9.49E-05 2.16E-05 -7.50E-04 8.69E-05 3.91E-02 1.69E-04 

659m_NAO_80C 3.94E-03 1.22E-03 1.94E-03 -6.77E-07 -1.08E-03 -7.30E-06 8.04E-05 -1.38E-05 

659m_K_80C 0.00E+00 -4.85E-04 0.00E+00 -1.37E-07 0.00E+00 -2.78E-07 0.00E+00 1.89E-05 

659m_SO42-_80C -3.87E-01 5.20E-05 -5.83E-02 1.47E-07 0.00E+00 0.00E+00 7.36E-03 4.21E-05 

659m_NO2-_80C 2.59E-01 8.15E-03 -2.65E-02 4.89E-07 7.67E-06 -1.09E-04 1.44E-04 1.76E-05 

659m_NO3-_80C -3.86E-01 1.70E-03 -3.02E-01 1.48E-08 -4.17E-04 -2.27E-05 4.26E-04 7.58E-05 

659m_MnO2_80C -1.25E-01 1.20E-03 -2.45E-01 7.51E-08 -4.56E-04 -3.68E-05 -5.74E-04 -8.19E-06 

659m_Fe2O3_80C -5.00E-01 4.09E-04 -1.64E-01 -3.37E-07 -4.64E-04 2.04E-06 -5.35E-04 1.53E-04 

865m_NAO_80C 9.43E-01 5.63E-04 1.20E-01 -2.65E-07 -2.89E-04 7.53E-04 -8.12E-04 -7.22E-04 

865m_K_80C 0.00E+00 -7.57E-05 0.00E+00 -8.62E-08 0.00E+00 2.96E-05 1.87E-04 -2.84E-05 

865m_SO42-_80C 8.54E-01 5.75E-04 -6.76E-02 6.33E-07 2.81E-03 -6.01E-05 1.60E-05 -6.46E-05 

865m_NO2-_80C 1.05E+00 3.14E-03 2.52E-01 7.22E-06 1.78E-04 -2.01E-03 -1.69E-05 -1.23E-04 

865m_NO3-_80C 6.60E-01 -9.18E-04 -1.99E-02 -1.23E-07 -5.68E-05 1.82E-05 9.61E-05 9.26E-06 

865m_MnO2_80C 3.81E-01 3.44E-04 -1.00E-01 -1.34E-07 -6.45E-04 1.36E-04 1.73E-04 -1.49E-04 

865m_Fe2O3_80C 9.48E-01 7.79E-04 2.74E-01 2.22E-06 1.84E-03 -2.80E-03 8.59E-05 -1.52E-04 

 



 

 

Chapter 4: 

Piezotolerant AOM in the Nankai Trough 

153 

 

Figure 4S.1. Average d13CDIC ± SD (vs. VPDB) of unamended C0023A sediments (i.e., no added oxidant) incubated at 40 MPa 

under in situ temperatures after (A) 14 days, (B) 60 days, (C) 200 days, and (D) 350 days. Pink bars: d13CDICd.kill ± 3 × SD. Green 

highlights: Depths with statistically significant biological AOM. 
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Figure 4S.2. Average d13CDIC ± SD (vs. VPDB) of sulfate amended C0023A sediments incubated at 40 MPa under in situ 

temperatures after (A) 14 days, (B) 60 days, (C) 200 days, and (D) 350 days. Pink bars: d13CDICd.kill ± 3 × SD. Green highlights: 

Depths with statistically significant biological AOM. 
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Figure 4S.3. Average d13CDIC ± SD (vs. VPDB) of Fe(III) amended C0023A sediments incubated at 40 MPa under in situ 

temperatures after (A) 14 days, (B) 60 days, (C) 200 days, and (D) 350 days. Pink bars: d13CDICd.kill ± 3 × SD. Green highlights: 

Depths with statistically significant biological AOM. 
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Figure 4S.4. Average d13CDIC ± SD (vs. VPDB) of Mn(IV) amended C0023A sediments incubated at 40 MPa under in situ 

temperatures after (A) 14 days, (B) 60 days, (C) 200 days, and (D) 350 days. Pink bars: d13CDICd.kill ± 3 × SD. Green highlights: 

Depths with statistically significant biological AOM. 
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Figure 4S.5. Average d13CDIC ±	SD (vs. VPDB) of nitrite amended C0023A sediments incubated at 40 MPa under in situ 

temperatures after (A) 14 days, (B) 60 days, (C) 200 days, and (D) 350 days. Pink bars: d13CDICd.kill ± 3 × SD. Green highlights: 

Depths with statistically significant biological AOM. 
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Figure 4S.6. Average d13CDIC ±	SD (vs. VPDB) of nitrate amended C0023A sediments incubated at 40 MPa under in situ 

temperatures after (A) 14 days, (B) 60 days, (C) 200 days, and (D) 350 days. Pink bars: d13CDICd.kill ± 3 × SD. Green highlights: 

Depths with statistically significant biological AOM. 
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Figure 4S.7. Geochemical signals of microbial metabolism at Site C0023. (A) Dissolved 
methane and sulfate, (B) C1/C2 ratios (Heuer et al., 2016) and δ13C-CH4, (C) dissolved 
acetate, (D) δ13C-acetate, and (E) potential rates of methanogenesis (MG) based on 
conversion of 14C-CO2 to 14C-CH4; note the high average value at 80 mbsf, scale has been 
adjusted to display rates in more deeply buried sediments. Red symbols on temperature 
axis designate the points where discrete temperature measurements were made (Morono 
et al., 2017). Abbreviations: VPDB, Vienna Pee Dee Belemnite standard; SMTZ, sulfate-
methane transition zone. Figure used with permission from Heuer et al., in prep.  
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CHAPTER 5 
 
Regulatory responses of Methanosarcina barkeri to freezing temperatures and 
perchlorates: Transcriptomic insights into the potential for biological 
methanogenesis on Mars  
 
Keywords: Methanogens, transcriptomics, perchlorates, Mars 

 

5.1 ABSTRACT 
Observations of trace methane (CH4) in the Martian atmosphere are of significant 

relevance to the astrobiology community given the overwhelming contribution of 
biological methanogenesis to atmospheric CH4 on Earth. However, it remains poorly 
understood how microorganisms might be able to survive under oxidative stresses 
characteristic of modern Mars. In this study we performed comparative transcriptomics 
on RNA from the methanogenic archaeon, Methanosarcina barkeri, which was grown in 
liquid culture at both 30˚C and 0˚C under high concentrations of perchlorates, highly 
oxidizing chaotropic salts which have been found across the Martian surface. Consistent 
with prior studies, we report quantifiable but inhibited methanogenesis in cultures 
supplemented with perchlorates. However, this suppression was not exacerbated in 
combination with growth at 0˚C. We present transcriptomic evidence of direct regulatory 
responses to increased osmotic stress, nitrogen limitation, and changing substrate 
availability. Regulatory switches to methylamine-based methanogenesis over 
hydrogenotrophy suggest competition for H2 with perchlorate reduction, which we 
propose is catalyzed abiotically by trace nickel and maintained by siphoning diffused H2. 
These results provide new insights into previously documented interactions between 
perchlorates, methanogens, and their environment and expands our understanding of the 
potential for methanogens’ survival beyond Earth and their possible contribution to 
Martian CH4.  
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5.2 INTRODUCTION 

The story of Martian atmospheric methane (CH4) remains enigmatic and under 

intense debate. In the past 15 years, a growing body of evidence has unfolded to suggest 

episodic appearances (and disappearances) of ppbv-level CH4 (Krasnopolsky et al., 2004; 

Formisano et al., 2004; Geminale et al., 2008; Mumma et al., 2009; Webster et al., 2015; 

Webster et al., 2018; Korablev et al., 2019). Myriad abiotic mechanisms have been 

suggested as potential CH4 sources, including cometary impacts (Fries et al., 2016), UV 

degradation of meteoritic and interplanetary dust particle (IDP) organics (Keppler et al., 

2012; Moores and Schuerger, 2012; Schuerger et al., 2012), and Fischer-Tropsch-type 

synthesis coupled to serpentinization of ultramafic silicates in the subsurface, which is 

subsequently released to the surface through seeps (Etiope et al., 2013; Oehler and 

Etiope, 2017) (Figure 5.1). On Earth, however, nearly 70% of CH4 is of biological origin, 

generated by methanogenic Archaea (Conrad, 2009). This has led to an extensive debate 

considering the biological origin of Martian CH4. Understandably, the quest to 

comprehend the nature of CH4 cycling on Mars is a fervent one, as it may be the most 

conspicuous biosignature detected on Mars to date.  

Methanogens are not only among the most deeply rooted microorganisms in the 

tree of life, but they are also among the most successful: they have proliferated into 

nearly every habitable anaerobic environment and possess conserved adaptions for 

growth and survival under stressful conditions including exposure to prolonged 

desiccation (Kendrick and Kral, 2006; Anderson et al., 2012; Kral and Altheide, 2013), 

high salinity (Sowers and Gunsalus, 1988; Maestrojuan et al., 1992; Sowers et al., 1993; 

Sowers and Gunsalus, 1995; Roessler et al., 2002), strong oxidants (Shcherbakova et al., 
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2015; Kral et al., 2016), and extremes in temperature, pH, and pressure (Rivkina et al., 

2002; Rivkina et al., 2004; Rivkina et al., 2007; Takai et al., 2008; Sinha et al., 2017). 

Thus, they are ideal candidates in the consideration of biology’s potential contribution to 

Martian CH4 and have thus been the subject of extensive study to infer how hostile 

conditions simulating modern Mars may allow – or inhibit – biological methanogenesis 

(Kendrick and Kral, 2006; Chastain and Kral, 2010; Kral et al., 2011; Kral and Altheide, 

2013; Shcherbakova et al., 2015; Kral et al., 2016; Sinha et al., 2017; Mickol and Kral, 

2017).  

Perchlorate salts are highly soluble, chaotropic compounds that appear to be 

pervasive on Mars (Hecht et al., 2009; Navarro-González et al., 2010; Glavin et al., 2013; 

Kounaves et al., 2014a; Kounaves et al., 2014b; Clark and Kounaves, 2016). Perchlorates 

are of great interest to Martian habitability studies for their hygroscopicity and low 

eutectic temperatures, allowing for the formation of stable liquid water brines at 

temperatures as low as -74.6˚C and 55% relative humidity (Pestova et al., 2005; Chevrier 

et al., 2009; Marion et al., 2010; Stillman and Grimm, 2011; Toner et al., 2014; 

Nikolakakos and Whiteway, 2015).  Previous work has reported decreased CH4 

production in methanogenic cultures supplemented with increasing concentrations of 

perchlorate salts (Shcherbakova et al., 2015; Kral et al., 2016). To date, the mechanisms 

resulting in this apparent inhibition of methanogenesis have not been fully explored.  In 

this chapter I utilize transcriptomics to evaluate regulatory responses of the methanogenic 

archaeon Methanosarcina barkeri during a 28-day exposure to high concentrations of 

sodium-, magnesium-, and calcium-perchlorate salts at 30˚C and 0˚C to understand how 
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perchlorate salts inhibit methanogenesis and how they would influence their survival on 

Mars.  

  

Figure 5.1. Proposed model for Martian CH4 cycle. Sources indicated by grey boxes. 
Sinks are highlighted by green boxes and accompanying arrows (Atreya et al., 2007; 
Moores and Schuerger, 2012; Harris et al., 2019; Seto et al., 2019). Reservoirs, transport 
systems, and substrate-generating intermediates are denoted by orange boxes. This figure 
was generated using images from Mars Reconnaissance Orbiter and Mars 2030 virtual 
reality game (produced by NASA in collaboration with the MIT AeroAstro Lab and 
Fusion Media Group, Doral FL) in accordance with the fair use doctrine of United States 
copyright law. Abbreviations: ANMEs, anaerobic methanotrophs.  
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5.3 MATERIALS AND METHODS 

5.3.1 Materials and culture conditions. Methanosarcina barkeri wild-type strain 

MS (ATCC® 51582Ô) was grown hydrogenotrophically (15 mL of 80:20 H2:CO2 

headspace pressurized to 1.5 bar) in anaerobic balch tubes (Chemglass Life Sciences 

LLC, Vineland, NJ USA) containing 9 mL DSMZ medium 120a, 10 mg/L EDTA (pH 7.0 

to 7.2) (Bryant and Boone, 1987), supplemented with trace element solution SL-10 

(Widdel et al., 1983) and vitamin supplement MD-VS (ATCC®, Manassas, VA USA). 

Media assaying for perchlorate tolerance were augmented to 10 mM (final concentration) 

NaClO4, Mg(ClO4)2, or Ca(ClO4)2. Balch tubes were inoculated with 1 mL cell 

suspensions containing ~4 x 107 cells and grown in batches of 9 biological replicates plus 

one autoclave-sterilized media blank for 28 days. For each experimental treatment 

(perchlorate-free control, NaClO4, Mg(ClO4)2, or Ca(ClO4)2), optical density 

measurements (OD) and CH4 production were monitored weekly in parallel experiments 

incubated at 30˚C or 0˚C (Figure 5.2).  

 

Figure 5.2. Experimental growth conditions investigating temperature and 
perchlorate effects on M. barkeri.  
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OD measurements were performed spectrophotometrically at 600 nm using a 

Genesys 30 Visible Spectrometer (Thermo-Scientific Corp., Madison, WI USA). At the 

end of the incubation experiment, direct cell counts were performed on enrichment 

aliquots fluorescently stained with Acridine Orange (AO) dye (catalog #318337, Sigma-

Aldrich Chemical, Co., Milwaukee, WI USA) (50 µM final concentration) following an 

established procedure (Francisco et al., 1973). Stained cells were enumerated in a Spotlite 

hemocytometer counting chamber (McGaw Park, IL USA) with a Zeiss Axioskope 40 

epifluorescence microscope (ZEISS Microscopy, Jena, Germany) at 600´ magnification 

using an AO filter cube set (excitation 470/20 nm; emission >510 nm).  

Headspace gas samples were collected via gas-tight syringes (catalog #24886, 

Restek U.S., Bellefonte, PA USA) to measure CH4 evolution using a Trace 1310 gas 

chromatograph equipped with a flame-ionizing detector (GC-FID) (ThermoFisher 

Scientific, Waltham, MA USA). To avoid injecting atmospheric O2 and residual carrier-

over of trace gases within the syringes between samples, all syringes were flushed three 

times with ultra-high purity nitrogen gas (UHP N2) between samples.  

 
5.3.2 RNA isolation and purification. After 28 days’ incubation, culture and 

blank volume contents were briefly vortexed and aseptically transferred into sterile 15 

mL Falcon® tubes (Corning Inc., Corning, NY USA) at incubation temperature inside a 

Coy anaerobic chamber (Coy Laboratory Products Inc., Grass Lake, MI USA). Tubes 

were centrifuged at 3,000 ´ g for 1 minute using an IEC Centra CL2 centrifuge (Thermo 

Electron Company, Milford, MA USA) to pellet cells. Media was poured off for pH and 

electrical conductivity measurements, leaving behind 1 mL. To ensure quantifiable RNA 

yields downstream, the nine biological replicates from each condition were consolidated 
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into three sets of three samples each for extraction (3 mL pelleted cell suspension/tube). 

RNAlater solution (ThermoFisher Scientific, Waltham, MA USA) was added to a final 

volume of ~12 mL. Samples were left to equilibrate at incubation temperature for 3 

hours, transferred to 4 ̊C for 24 hours, and then stored at -80˚C until overnight shipment 

on dry ice to Princeton University for RNA extraction.  

Samples preserved at -80 ̊C in RNAlater were thawed on ice in a sealed container 

before contents were transferred to 50 mL Falcon® tubes. An equal volume (12 mL) of 

nuclease-free water (Qiagen, Hilden, Germany) was added to RNAlater-preserved 

samples, briefly vortexed, and centrifuged at 5,000 × g for 10 minutes using a Sorvall 

Legend XI centrifuge (ThermoFisher Scientific, Waltham, MA USA). The supernatant 

was subsequently discarded, and RNA was extracted following a modified protocol from 

a Zymo Quick-RNA Miniprep Plus Kit (Zymo Research, Irvine, CA USA). RNA lysis 

buffer and nuclease-free water were added to each sample in a 5:1 ratio, and sterile 0.7 

mm garnet bashing beads (Qiagen, Hilden, Germany) were added to facilitate mechanical 

lysis during subsequent vortexing. Samples were then vortexed for 1 minute and 

centrifuged at 10,000 × g at 4 ̊C for 1 minute using an Eppendorf 5810R (Eppendorf, 

Hamburg, Germany) to pellet cell debris. The supernatant containing total nucleic acids 

was transferred to a yellow Spin-Away™ column (Zymo Research, Irvine, CA USA) 

fitted in a 2 ml collection tube. Samples were centrifuged at 10,000 x g for 1 minute 

using an AccuSpin Micro 17 (ThermoFisher Scientific, Waltham, MA USA) to separate 

out genomic DNA. Following centrifugation, the Spin-Away™ filter was discarded and 

the filtrate was collected from the column for RNA purification.  
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Total nucleic acids were then precipitated by adding 1 mL of chilled absolute 

ethanol. Pellets were mixed by pipetting and then transferred to green Zymo-Spin™ 

IIICG column filters fitted in clean collection tubes. Samples were centrifuged at 10,000 

× g for 30 seconds to collect precipitated nucleic acids on the column, subsequently 

treated with 400 µL RNA wash buffer, and centrifuged for 30 seconds at 10,000 × g. The 

wash buffer was discarded and columns were treated with 80 µL DNAse I reaction 

mixture (per 80 µL: 5 µL DNAse 1 [1 U/µL], 8 µL 10X DNAse I reaction buffer [Zymo 

Research, Irvine, CA USA], 3 µL nuclease-free water, 64 µL RNA wash buffer [Zymo 

Research, Irvine, CA USA]) to degrade trace genomic DNA and left to incubate on ice in 

the dark for 15 minutes. DNAse-treated samples were then centrifuged at 10,000 × g for 

30 seconds. The reaction buffers were discarded, column filters were washed three times 

with 400, 700, and 400 µl of RNA Prep Buffer (Zymo Research, Irvine, CA USA), 

centrifuging twice for 30 seconds at 10,000 × g and at 16,000 × g for 2 minutes for the 

final wash. Total RNA was then eluted into sterile, nuclease-free PCR tubes on ice using 

nuclease-free water pre-heated to 95 ̊C. Total RNA was quantified using a Qubit hs RNA 

assay kit coupled to a Qubit 2.0 analyzer (ThermoFisher Scientific, Waltham, MA USA) 

following the manufacturer’s protocol. RNA quality was subsequently assessed using a 

2100 Bioanalyzer (Agilent Technologies Inc., Santa Clara, CA USA). RNA samples were 

kept at -20˚C until library preparation and sequencing. 

All RNA extraction steps were performed using nuclease-free pipette tips 

(Corning Inc., Corning, NY USA) in a UV-sterilized laminar flow hood. All surfaces, 

pipettes, and gloves were wiped down at each step with RNaseZap® solution 

(ThermoFisher Scientific, Waltham, MA USA) to minimize potential RNase 
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contamination. Parallel extraction blanks of extraction kit reagents and blank growth 

media co-incubated with M. barkeri enrichment cultures were performed to ensure 

cleanliness of the extraction procedure and sterility of uninoculated growth media.   

 

5.3.3 RNA library prep and RNA-Seq. Ribosomal RNA was depleted from total 

RNA using a Ribo-Zero Bacterial rRNA Removal Kit (Illumina, Inc., San Diego, CA 

USA) following the manufacturer’s instructions and using the provided universal probe 

sequence. Bi-directional library prep was performed for each treatment and its constituent 

3 sequencing replicates using the Nextera DNA Flex Library Prep Kit (Illumina, Inc., San 

Diego, CA USA) on the automated ApolloÔ 324 system (Takara Bio USA, Inc., 

Mountain View, CA, USA).  RNA-Seq was carried out for 318 cycles on two lanes of a 

NovaSeq SP Flowcell (Illumina, Inc., San Diego, CA USA) (2 x 150 bp) at the Princeton 

University genomics core facility. 

 

5.3.4 Annotation and comparative transcriptomics. Quality filtering of paired-

end reads was performed using fastp v.0.12.6 (Chen et al., 2018), removing reads <50 nt, 

containing >1 Ns, Phred quality scores < 30, and sample barcode sequences. Using 

Bowtie2 v.2.3.2 (Langmead and Salzberg, 2012), retained, quality-filtered reads from 

each experiment were mapped to coding sequence (CDS) regions subset from the 

complete M. barkeri MS reference genome obtained from NCBI GenBank (accession no. 

NZ_CP009528.1). CDS-mapped reads were then sorted, indexed, and processed for 

extraction from the sequenced transcriptome using Samtools v.1.5 (Li et al., 2009) and 

BEDTools v.2.17.0 (Quinlan and Hall, 2010). Gene annotation was performed using 
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NCBI BLASTn v.2.2.29+ (Camacho et al., 2009) against a reference M. barkeri MS CDS 

assembly database generated using option -makeblastdb. Protein assignment was 

determined as the entry with the greatest sequence identity alignment with the query 

sequence, the lowest E-value, and largest bit score. Differential expression analysis of 

investigated treatments relative to the 30˚C and 0˚C perchlorate-free controls, within-

group (i.e. biological replicate) variance estimation, and transcript fragment counts per 

million mapped reads (FPM) were performed using DESeq2 (Love et al., 2014). 

Metabolic pathway involvement of identified genes was determined by referencing the 

Kyoto Encyclopedia of Genes and Genomes (KEGG) (Ogata et al., 1999).  

 

5.4 RESULTS 

5.4.1 Transcriptome assembly statistics. M. barkeri possesses the second largest 

described genome amongst the Archaea (Maeder et al., 2006). This genome comprises a 

4.53 megabase (Mb) circular chromosome and a 40 kilobase (kb) plasmid, which 

collectively encode 3,760 genes, 3,470 of which are protein-encoding CDS regions (3.17 

Mb).  RNA sequencing yielded a total of 1,500,716,043 quality paired end reads across 

24 libraries (8 conditions × 3 replicates/condition) with a mean Phred (sequence quality) 

score of 36. On average 1.60 ± 0.66 % of 30˚C and 1.50 ± 0.51% of 0˚C quality-filtered 

reads mapped back to CDS regions (n = 12 libraries/temperature condition; Table 5S.2), 

consistent with expectations that mRNA typically comprises 1-5% of total RNA in 

prokaryotic cells (Sorek and Cossart, 2010). Per individual open reading frame, the 

average FPM was consistent across all conditions (Figures 5S.2-5S.3, Table 5S.3).  
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5.4.2 Methanogenesis and associated regulatory responses. Methane production 

was observed in all investigated conditions (Figure 5.3). At 30˚C, the addition of 

Ca(ClO4)2, Mg(ClO4)2, and Na(ClO4) reduced net CH4 production by 48%, 32%, and 

24%, respectively, relative to the perchlorate-free control. Significant reduction in CH4 

was observed across all treatments at 0˚C with respect to 30˚C, with no significant 

differences in production yields between perchlorate-incubated samples and the 

perchlorate-free control (Figure 5.3). No CH4 production was observed in the media 

blank controls (data not shown). We note that it was difficult to assess culture growth via 

OD600 measurements (Figure 5S.1) due to precipitates formation in the media over time.  

 

Figure 5.3. Cumulative CH4 formation by M. barkeri strain MS grown (from left 
to right) without perchlorates (Control), Ca(ClO4), Mg(ClO4)2, or Na(ClO4) at 
30˚C (filled triangles) and 0˚C (open triangles).  
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Both temperature and perchlorate exposure demonstrated distinct metabolic 

responses in M. barkeri’s CH4 production pathways (Figures 5.4 – 5.7). When grown at 

0˚C, the perchlorate-free control demonstrated significant up-regulation of several genes 

in the hydrogenotrophic pathway relative to the 30˚C perchlorate-free control (Figure 

5.4), including log2-fold changes (LFC) in formylmethanofuran dehydrogenase subunit B 

(FmdB) (LFC = 0.34 ± 0.12, P = 0.02), methenyl-tetrahydrosarcinapterin (H4SPT) 

cyclohydrolase (Mch) (LFC = 0.21 ± 0.08, P = 0.04), and periplasmic heterodisulfide 

reductase (HdrDE) (LFCHdrD = 0.23 ± 0.07, P = 0.01; LFCHdrE = 0.22 ± 0.09, P = 0.03). 

Likewise, significant down-regulation was observed in the sodium ion (Na+) transporter 

methyl-H4SPT:coenzyme M methyltransferase complex (MtrA) (LFC = -0.51 ± 0.22, P = 

0.02), as well as the F420-reducing subunit of the periplasmic energy conserving 

hydrogenase (EchF) (LFC = -0.33 ± 0.15, P = 0.03).  
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Figure 5.4. Regulatory responses in methanogenesis pathways in M. barkeri 
strain MS grown perchlorate-free at 0˚C.  Significant differential expression 
(Wald test, P < 0.05) relative to the 30˚C perchlorate-free control. Abbreviations: 
n.s.d., no significant difference; Non-specific, common to multiple 
methanogenesis pathways. 
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0.13, P = 0.002) (Figures 5.5A, 5.6A). Unique to the Mg(ClO4)2 incubations was the up-

regulation of FmdA (LFC = 0.40 ± 0.10, P = 0.001). 

Supplying reduced ferredoxin to Fmd, EchF was down-regulated in the presence 

of Mg(ClO4)2 and Na(ClO4) at 30˚C (LFCMg = -0.77 ± 0.20, p < 0.001; LFCNa = -0.70 ± 

0.20, p < 0.001) (Figures 5.5A, 5.6A). Contrasting to this, most subunits of Ech were 

significantly up-regulated in Ca(ClO4)2 conditions (LFCEchA = 0.62 ± 0.14, p < 0.001; 

LFCEchB = 0.60 ± 0.19, P = 0.004; LFCEchE = 0.35 ± 0.12, P = 0.01) (Figure 5.7A).  

Among other hydrogenases demonstrating significant up-regulation was 

methanophenazine-dependent hydrogenase, Vht, specifically, the large subunit VhtA 

(LFCCa = 0.31 ± 0.12, P = 0.04; LFCMg = -0.32 ± 0.12; P = 0.03) and cytochrome b 

subunit VhtC (LFCCa = 0.31 ± 0.12, P = 0.04). Regardless of type of perchlorate 

exposure, all subunits of both coenzyme F420 hydrogenases (Frhabg) were significantly 

up-regulated at 0˚C (LFCFrha = 0.38 ± 0.12, P = 0.01; LFCFrhb = 0.17 ± 0.07, P = 0.05; 

LFCFrhg = 0.29 ± 0.13, P = 0.04) (Figure 5.4).  
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Figure 5.5. Regulatory responses in methanogenesis pathways in Mg(ClO4)2-
incubated M. barkeri strain MS grown at 30˚C (A) relative to the 30˚C 
perchlorate-free control and 0˚C (B) relative to the 0˚C perchlorate-free control. 
Significant differential expression (Wald test, P < 0.05). Abbreviations: n.s.d., no 
significant difference; Non-specific, common to multiple methanogenesis 
pathways. 
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Figure 5.6. Regulatory responses in methanogenesis pathways in Na(ClO4)-
incubated M. barkeri strain MS grown at 30˚C (A) relative to the 30˚C 
perchlorate-free control and 0˚C (B) relative to the 0˚C perchlorate-free control. 
Significant differential expression (Wald test, P < 0.05). Abbreviations: n.s.d., no 
significant difference; Non-specific, common to multiple methanogenesis 
pathways. Full names of proteins and metabolites are respectively listed in 
Appendix A, Table A.2 and Table A.3. 
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Figure 5.7. Regulatory responses in methanogenesis pathways in Ca(ClO4)2-
incubated M. barkeri strain MS grown at 30˚C (A) relative to the 30˚C 
perchlorate-free control and at 0˚C (B) relative to the 0˚C perchlorate-free control. 
Abbreviations: n.s.d., no significant difference; Non-specific, common to multiple 
methanogenesis pathways. Complete names of proteins and metabolites are 
respectively listed in Appendix A, Table A.2 and Table A.3. 
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Despite H2 being the only reducing equivalent provided for the production of CH4 

in our incubations, the up-regulation of complete methylamine-dependent 

methanogenesis pathways was conspicuous in the 30˚C perchlorate treatments. The 

addition of Ca(ClO4)2, Mg(ClO4)2, and Na(ClO4) resulted in significant and complete up-

regulation of all three (mono-, di-, and trimethylamine) pathways, including associated 

membrane permeases (Figures 5.4 – 5.7).   

 
Figure 5.8. Differential expression (Log2-fold change, LFC) of 
methylamine-specific methanogenesis genes in M. barkeri MS. 
Perchlorate-grown 30˚C and 0˚C perchlorate-free control cultures 
are relative to 30˚C perchlorate-free control. 0˚C perchlorate-grown 
cultures are relative to 0˚C perchlorate-free control. An absence of 
a bar means no significant differential expression from control. 
(Wald test, P < 0.05). Full names of proteins encoded by listed 
genes are provided in Appendix A, Table A.4.  
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 Despite the up-regulation of several genes in the methanogenesis pathway, the 

terminal step encoding methyl-coenzyme M (CH3-CoM) reductase subunit alpha (McrA) 

was down-regulated at 30˚C in Mg(ClO4)2 (Figure 5.5A) (LFC = -0.40 ± 0.16, P = 0.03) 

and Na(ClO4) (Figure 7A) enrichments (LFC = -0.36 ± 0.16, P = 0.04). Although this 

reduction in expression is consistent with decreased CH4 production observed in these 

treatments (Figure 3), both Mg(ClO4)2 and Na(ClO4)-grown enrichments generated 

greater net CH4 than Ca(ClO4)2-grown M. barkeri, which showed no significant 

differences in expression of the Mcr complex from the 30˚C perchlorate-free control. 

Furthermore, no elements of Mcr were significantly differentially expressed at 0˚C in 

perchlorate-free media (Figure 5.4). Therefore, the decreased expression of McrA is not 

sufficient to explain the associated decrease in CH4 evolution in perchlorate enrichments 

at 30˚C.  

 Elements of the carbon monoxide dehydrogenase/acetyl-CoA synthase complex 

(CODH/ACS) demonstrated significant regulatory changes as a function of temperature 

and perchlorate exposure. CooS, was up-regulated in 30˚C Mg(ClO4)2 and Na(ClO4) 

treatments (LFCMg = 0.40 ± 0.13, P = 0.008; LFCNa = 0.49 ± 0.13, P = 0.001) (Figures 6-

7). Carbon monoxide dehydrogenase subunit epsilon (Cdhε), which recycles ferredoxin 

in the reversible conversion between CO and CO2, was up-regulated with Ca(ClO4)2 at 

30˚C (LFC = 0.53 ± 0.14, P = 0.002) (Figure 5.7A), but was down-regulated in the 0˚C 

Na(ClO4) treatment (LFC = -1.00 ± 0.21, P  < 0.001) (Figure 5.6B). M. barkeri grown at 

30˚C with Ca(ClO4)2 also demonstrated significant up-regulation of 5-H4SPT:corrinoid 

Fe-S protein methyltransferase (Cdhγ) (LFC = 0.39 ± 0.16, P = 0.04), which plays a key 
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role in the generation H4SPT and acetyl-CoA for biomass synthesis in the Wood-Ljundal 

pathway (Figure 5.7A).  

With respect to the 0˚C perchlorate-free control, both alpha and beta chains of 

ACS, respectively encoded by Cdha and Cdhb, were down-regulated in 0˚C Na(ClO4)-

supplemented cultures (LFCCdha = -1.03  ± 0.13, P < 0.001; LFCCdhb = -0.76 ± 0.22, P = 

0.003). Cdha was also down-regulated in 0˚C Mg(ClO4)2 cultures (LFC = -0.73 ± 0.32, P 

= 0.009). Cdhd, which encodes an iron-sulfur corrinoid protein, was also down-regulated 

at 0˚C in Mg(ClO4)2 (LFC = -0.67 ± 0.28, P = 0.007). We observed no significant 

differential expression of CODH/ACS complex genes in  0˚C Ca(ClO4)2-grown M. 

barkeri (Appendix A, Table A.14).  

 
 5.4.3 Regulation of nitrogen metabolism.  We observed substantial up-regulation 

of ammonium transporters (Amt) in the 30˚C perchlorate treatments with respect to the 

30˚C control. Only one ammonium transporter was up-regulated in the presence of 

Ca(ClO4)2 (LFC = 0.52 ± 0.24, P = 0.04), but three Amt genes were amongst the most 

significantly up-regulated genes in both Mg(ClO4)2 and Na(ClO4) treatments (LFCMg.1 = 

1.34 ± 0.12, P < 0.001; LFCMg.2 = 1.27 ± 0.18, P < 0.001; LFCMg.3 = 1.21 ± 0.22, P < 

0.001; LFCNa.1 = 1.33 ± 0.22, P < 0.001; LFCNa.2 = 1.29 ± 0.18, P < 0.001; LFCNa.3 = 1.16 

± 0.13, P < 0.001).  Notably, we observed no significant differences in Amt expression at 

0˚C in any treatment. Perchlorates must somehow be impacting nitrogen metabolism in 

M. barkeri at 30˚C to an extent that warrants substantial log-fold changes in transcription 

of Amt. 
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Despite an initial abundance of fixed nitrogen (9.3 mM NH4Cl plus undefined 

components of complex nutrients such as yeast extract and casitone) and a lack of 

supplied N2 in the headspace of M. barkeri incubations, we observed significant 

differential expression of nitrogenase proteins when cells were grown with perchlorates 

(Figure 5.9). Transcriptomes from Mg(ClO4)2 and Na(ClO4) amended media showed 

significant differential expression of 7 and 8 genes directly involved in nitrogenase 

activity, respectively.  Conversely, only one nitrogenase component was differentially 

expressed at 0˚C and in Ca(ClO4)2 amended cultures: the Fe-protein dinitrogen reductase, 

NifH, which is responsible for electron transfer to the a2b2 N2 binding site (encoded by 

NifD and NifK, respectively) via ATP hydrolysis.  

 To save cells from the energetic costs associated with N2 fixation, regulatory P-II 

proteins (NifI) will trigger N2 fixation to switch off when fixed nitrogen becomes freely 

available (Lobo and Zinder, 1988; Lobo and Zinder, 1990; Kessler and Leigh, 1999; 

Kessler et al., 2001).  Several copies of NifI demonstrated a significant increase in 

expression in Mg(ClO4)2 and Na(ClO4)-supplemented cultures (Figure 5.9), suggesting a 

concerted effort to dedicate cellular energy towards signaling the shut off of FeMo 

nitrogenase activity. However, the occurrence of this process is unverifiable based on 

transcriptomics alone. The observation of co-upregulation of both nitrogenases and P-II 

repressors is consistent with previous findings that the P-II orchestrated shutoff is a 

posttranslational regulatory process and does not affect transcription or mRNA stability 

of other Nif genes under conditions of intermittent NH3 availability (Kessler et al., 2001).   
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Figure 5.9. Differential expression (Log2-fold change, LFC) of genes encoding 
nitrogenase proteins in M. barkeri MS. Perchlorate-amended 30˚C and 0˚C 
perchlorate-free control cultures are relative to 30˚C perchlorate-free control. 
0˚C perchlorate-amended cultures are relative to 0˚C perchlorate-free control. 
Significance identified via Wald test (P < 0.05). Full names of proteins encoded 
by listed genes are found in Appendix A, Table A.5.  
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observed up-regulation of the complete operon for osmostress protectants uptake A 

(LFCOpuAA = 0.64 ± 0.17, P < 0.001; LFCOpuAB = 0.73 ± 0.20, P < 0.001; LFCOpuAC = 0.66 

± 0.30, P = 0.02). In Na(ClO4) enrichments, significant log2-fold changes were also 

observed for OpuAA (LFC = 0.54 ± 0.17, P = 4 × 10-3) and OpuAB (LFC = 0.59 ± 0.20, 

P = 7 × 10-3). OpuA is responsible for the uptake of extracellular glycine betaine, 

belonging to a family of ABC transporters that hydrolyze ATP to import glycine betaine 

and other osmoprotectants such as proline (Kempf and Bremer, 1995; Kempf and 

Bremer, 1998; Hoffmann and Bremer, 2017). The Opu family also includes uptake 

systems for choline, a glycine betaine precursor (Hoffmann and Bremer, 2017), but M. 

barkeri lacks the cellular machinery for de novo glycine betaine synthesis (Hippe et al., 

1979).   

In addition to being an osmoprotectant, glycine betaine is also cryoprotective 

(Casanueva et al., 2010).  Relative to the 0˚C perchlorate-free control, we observed 

significant down-regulation of OpuAA in 0˚C Mg(ClO4)2 (LFC = -0.94 ± 0.30, P = 8.02 

× 10-3) and Na(ClO4) (LFC = -0.69 ± 0.31, P = 3.14 × 10-2) treatments. OpuAB was also 

down-regulated in 0˚C Mg(ClO4)2-grown cultures (LFC = -1.03 ± 0.38, P = 1.56 × 10-2). 

This likely signals a decreased cold shock response in M. barkeri due to the solubility and 

freezing point depression of perchlorate salts.  

 Evidence for osmotic stress is also reflected in the regulation of cell surface 

protein synthesis. Methanochondroitin is the primary constituent of the extracellular 

matrix that clumps M. barkeri cells into multicellular aggregates under optimal growth 

conditions (Kreisl and Kandler, 1986). Increased salinity ([NaCl] > 0.4 M) confers a 

decrease in methanochondroitin synthesis, thinning the methanochondroitin outer layer 
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and ultimately leading to the disaggregation of M. barkeri clumps into planktonic cells  

(Sowers et al., 1993). Glucuronic acid, generated from glucose degradation via UDP-

glucose dehydrogenase (UGDH), is a major component of methanochondroitin (Kreisl 

and Kandler, 1986; Jarrell et al., 2010). We observed significant down-regulation of 

UGDH under Mg(ClO4)2 and Na(ClO4) conditions at 30˚C (LFCMg = -0.55 ± 0.17, P = 3 

× 10-3; LFCNa = -0.51 ± 0.17, P = 7 × 10-3), which may indicate conditions conducive to 

methanochondroitin thinning, though any increase in salinity associated with 10 mM 

perchlorate amendments in our incubations is minimal and likely insufficient to promote 

disaggregation. Electron microscopy is necessary to compare methanochondroitin 

thickness between conditions in order to assess this hypothesis. 

  

 5.4.5 Amino acid metabolic pathways. We assessed the regulation of amino acid 

synthesis, degradation, and recycling to infer how freezing conditions and/or perchlorate 

exposure may have impacted the structural and functional activity of proteins. In addition 

to the 20 common amino acids, M. barkeri also encodes a 21st residue, pyrrolysine, via 

the ‘amber’ stop codon UAG (Srinivasan et al., 2002). A comparison of the genes 

encoding amino acid synthesis proteins showed large negative log2-fold changes at 30˚C 

in Mg(ClO4)2 and Na(ClO4) amended cultures with respect to cysteine-producing proteins 

cysteine synthase (CysK) and serine acetyltransferase (CysE) (Figure 5.10A). Further 

examination of complete amino acid metabolic pathways (Appendix B, Figures B.1 – 

B.13) revealed that this pattern of substantial down-regulation of genes was characteristic 

of not only cysteine, but also other the sulfur-containing amino acid methionine (Figure 

5.10B).  
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Figure 5.10. Differential expression (Log2-fold change, LFC) of genes involved in 
(A) amino acid synthesis and (B) recycling of the sulfur-containing amino acids 
methionine and cysteine in M. barkeri MS. Perchlorate-amended 30˚C and 0˚C 
perchlorate-free control cultures are relative to 30˚C perchlorate-free control. 0˚C 
perchlorate-amended cultures are relative to 0˚C perchlorate-free control. 
Significant differential expression was identified via Wald test (P < 0.05). Full 
names of gene and amino acid abbreviations are respectively found in Appendix A, 
Table A.6 and Table A.7.  
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5.5 DISCUSSION 

5.5.1 Nitrogenase expression patterns provide insight into global metabolic 

state. Nitrogen fixation is an energetically expensive process, consuming at least 16 (and, 

by one calculation for methanogens (Lobo and Zinder, 1992), perhaps more than 50) 

moles of ATP per mole of N2 fixed (Sohm et al., 2011). Previous work has demonstrated 

that expression of Nif operon components NifD, NifK, and NifH in Methanococcus 

maripaludis is characteristic of growth under diazotrophic conditions, but undetectable 

after prolonged exposure to NH3 (Kessler et al., 1998). It is generally accepted that N2 

availability does not regulate nitrogenase activity (Halbleib and Ludden, 2000). In M. 

barkeri, NH3 concentrations as low as 10 µM have been shown to be inhibitory to 

nitrogen fixation (Lobo and Zinder, 1988; Lobo and Zinder, 1990; Kessler and Leigh, 

1999; Kessler et al., 2001). Our results appear inconsistent with these findings. Given the 

initial concentrations of fixed nitrogen in the growth media and the significant up-

regulation of both ammonia transporters and genes involved in methylamine 

methanogenesis at 30˚C with the addition of perchlorate salts, it is surprising to observe a 

simultaneous up-regulation in nitrogenase gene expression (Figure 5.9). 

It is possible, however, that the concurrent up-regulation of these genes is 

indicative of a physiological state of nitrogen starvation. In our experiments, M. barkeri 

growth is presumably limited by bioavailable fixed-N in the growth media. Nitrogen 

depletion at 30˚C is likely tied to our observation of stalled growth rates (Figure 5S.1). 

The up-regulation of ammonia transporters and methylamine permeases is consistent with 

a strategy of scavenging transiently available fixed-N. Methylamines were not present in 

the media and so the observation of significant up-regulation of methylamine-specific 
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methanogenesis pathways was unexpected, particularly because the decreased free energy 

yields of these reactions relative to the hydrogenotrophic pathway (Table 5.1). While we 

are presently unable to explain an exact mechanism of the formation of methylamines, we 

imagine possible interactions between perchlorates and amino acids in complex media 

components (e.g., from yeast extract and casitone in these experiments) could yield 

methylamine generation for uptake and utilization by M. barkeri for methanogenesis.  

Table 5.1. Gibbs free energy change (∆G˚Rxn) of methanogenesis net reactions at 30˚C 
and 0˚C. Values are presented in kJ/mol CH4.  

Reaction 30˚C 0˚C 

H++ HCO3
-  +	4H2 ↔ CH4 +	3H2O -158 -167 

4CH3OH ↔ 3CH4 + H+ +  HCO3
-  + 3H2O -121 -118 

4CH3OH + H2 ↔ CH4 + H2O -130 -130 

4CH3NH2 + 3H2O + 3H+ ↔ 3CH4 +  HCO3
-   + 4NH4

+ -136 -134 

CH3NH2 + H2 + H+ ↔ CH4 + NH4
+ -143 -143 

2(CH3)2NH + 3H2O + H+ ↔ 3CH4 +  HCO3
-  + 2NH4

+ -103 -98 

(CH3)2NH + 2H2 + H+ ↔ 2CH4 + 2NH4
+ -117 -116 

4(CH3)3N + 9H2O + H+ ↔ 9CH4 + 3HCO3
-  + 4NH4

+ -91 -86 

(CH3)3N + 3H2 + H+ ↔ 3CH4 + 3 NH4
+ -108 -106 

CH3COO- + H+ ↔ CH4 + CO2 -25 -21 

 

It has been suggested that glycine betaine may be a potential precursor of 

trimethylamine (TMA) (Oren, 1990; Seibel and Walsh, 2002). Given that M. barkeri does 

not possess a trimethylamine permease protein, TMA would need to be generated 
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intracellularly. The significant up-regulation of the glycine betaine-importing OpuAA 

operon provides one such mechanism to bring a TMA precursor into the cell. 

The intermittent availability of fixed-N can also be tied to the observed expression 

of Nif genes, reflecting a strategy of M. barkeri “priming itself” for nitrogen fixation once 

NH3 becomes limiting, presumably resulting from a decrease in bioavailable fixed-N due 

to unknown interactions between perchlorates and the media. Likewise, similar patterns 

in expression of regulatory P-II proteins point to an abundance of mRNA primed for 

translation to quickly prevent the unnecessary dumping of energy and electrons into N2 

reduction when NH3 becomes available again (e.g., the generation of NH3 from 

methylamine methanogenesis). The potential for translation of Nif transcripts under N 

limitation is also not unprecedented.   

The overproduction of MoFe nitrogenase has been observed at the proteomic 

level in nitrogen-starved Rhodopseudomonas palustris (Arp and Zumft, 1983). Another 

study investigating R. palustris showed a four- to eight-fold increase in MoFe nitrogenase 

activity in cultures grown under prolonged N limitation, compared to R. palustris grown 

diazatrophically (Alef et al., 1981). It is possible that increased nitrogenase activity also 

occurred in our incubations, but an established link between reduced nitrogenase activity 

and increased osmotic stress (Burns et al., 1985; Deits and Howard, 1990; Brabban et al., 

1999) suggests decreased nitrogenase activity is more likely. Relative to Nif homologues 

found in diazotrophic Bacteria, M. barkeri’s MoFe nitrogenase is three times more 

sensitive to increases in salinity with complete inhibition of nitrogenase activity 

occurring at 190 mM NaCl (Brabban et al., 1999). In the absence of proteomic data, it is 
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difficult to assess a correlation between the up-regulation of Nif genes and glycine 

betaine.   

 

5.5.2 The potential of catalytic nickel and “leaky” H2 as agnostic mediators of 

perchlorate reduction. Microbial perchlorate reduction has been observed in the 

Proteobacteria and halophilic Archaea (Logan et al., 2001; Coates and Achenbach, 2004; 

Yu et al., 2006; Bardiya and Bae, 2011; Liebensteiner et al., 2013; Oren et al., 2014), but 

to date no direct evidence has been shown demonstrating perchlorate reduction in 

methanogenic taxa. Perchlorate reduction has been observed in methanogenic 

enrichments, but the mechanism(s) driving this phenomenon remain poorly understood 

(Shcherbakova et al., 2015; Kral et al., 2016).  Abiotic reduction of perchlorate has been 

shown in a sterile minimal salts methanogenic medium under a 2 bar atmosphere of 80:20 

H2:CO2 supplemented with 5mM (final concentration) of either Na(ClO4) or Mg(ClO4)2 

(Shcherbakova et al., 2015). In culture media containing Methanobacterium arcticum M2 

(Shcherbakova et al., 2011), perchlorate reduction was increased by a factor of 1.7 and 

2.6 for Na(ClO4) and Mg(ClO4)2, respectively, leading to the authors’ suggestion that M. 

arcticum might be able to utilize perchlorate as an electron acceptor in the anaerobic 

oxidation of methane (AOM). These interpretations remain unverified. 

Perchlorate reduction in M. barkeri enrichments has been observed to 

significantly increase when the basal growth medium is supplemented with complex 

nutrients such as yeast extract and trypticase peptone (Kral et al., 2016). Notably, 

reduction has been observed to run more to completion in enrichments supplemented 

with Ca(ClO4)2 relative to Mg(ClO4)2 and Na(ClO4) (Kral et al., 2016). While we did not 
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measure perchlorate concentrations in this study, we may still be able to infer, given the 

same growth media composition in this study as that used by Kral et al.(2016), that the 

strikingly similar regulatory patterns observed at 30˚C in Mg(ClO4)2 and Na(ClO4) 

transcriptomes but not in Ca(ClO4)2 transcriptomes (e.g. Figures 5.5A and 5.6A vs. 

Figure 5.7A and Figures 5.9-10) are reflective of comparatively advanced progression of 

Ca(ClO4)2 reduction. Ultimately, perchlorate measurements need to be made to confirm 

this, but at present we consider this the most likely explanation to explain the significant 

differences in expression which distinguish Ca(ClO4)2-supplemented M. barkeri from the 

other two perchlorate conditions. Measurements to monitor perchlorate concentration 

over the course of incubation are planned for future experiments to verify this 

interpretation. 

If we are to accept the evidence and precedents supporting the occurrence of 

perchlorate reduction in our cultures, we must identify an electron donor that can 

facilitate this reaction to proceed. Kral et al. (2016) ruled out Na2S and stainless steel as 

significant contributors to perchlorate reduction in methanogenic media, as they observed 

no significant differences in CH4 production in cultures grown with these compounds 

versus those grown without. Although they do not explicitly address whether M. barkeri 

and other investigated methanogens could have mediated perchlorate reduction, they also 

argue their results were not supportive of perchlorate reduction being linked to CH4 

oxidation (abiotic or otherwise) (Kral et al., 2016).  

The work of Shcherbakova et al. (2015) and Kral et al. (2016) suggests that the 

composition of methanogenic growth media is sufficient to kickstart abiotic perchlorate 

reduction, which is stimulated by the addition of complex organic nutrients, and is 
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enhanced further by changing gradients of electrochemical potential sustained by 

microbial metabolism. Therefore, we must conclude that the electron donor is available in 

the media and reacts more spontaneously with perchlorate with the addition of complex 

organic nutrients and metabolizing biomass. H2 is a potential reducing agent of 

perchlorate (∆G˚' = -289 kJ/mol H2). However, the reaction is kinetically sluggish at 

ambient conditions due to its large activation energy (Abu-Omar, 2003).  

The addition of metallic catalysts and adsorptive carbon substrates have been 

shown to overcome this energy barrier (Wang et al., 2008). Nickel has long been known 

as an excellent hydrogenation catalyst (Adkins and Cramer, 1930) and is an essential 

cofactor for hydrogenase activity in methanogens (Thauer et al., 2010).  We postulate that 

free nickel sourced from the trace element solution could catalyze abiotic perchlorate 

reduction observed in sterile methanogenic media (Shcherbakova et al., 2015; Kral et al., 

2016). Conspicuous regulatory shifts observed in Ni-containing hydrogenases at 30˚C but 

not at 0˚C is intriguing (notably the active sites EchE, VhtA, Frha; see Figures 5.5 – 5.7). 

These results suggest the need to investigate whether H2-dependent perchlorate reduction 

could be enzymatically stimulated when adsorbed to a Ni-containing active site.  

In methylamine methanogenesis, H2 is recycled by the partial reversal of the 

methanogenesis pathway, generated via the oxidation of F420H2 by Frh and the oxidation 

of ferredoxin by Ech (blue arrows in Figures 5.5 - 5.7). H2 generated by the oxidation of 

F420H2 and ferredoxin diffuses across the membrane to be oxidized by Vht in an energy 

conserving scheme to recycle methanophenazine (MP) (Ide et al., 1999; Meuer et al., 

2002; Deppenmeier, 2004; Kulkarni et al., 2018).  Ferredoxin oxidation by Ech also 

results in the translocation of 2H+ through Ech, contributing to the production of a proton 
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gradient (high outside the cell) (Kulkarni et al., 2018). Evidence for the generation of this 

proton gradient is indicated in our incubations based on drops in pH (up to 0.77 pH units) 

(Table 5S.1). Based on up-regulation of the genes for methylamine methanogenesis, we 

attribute the differential expression of Ech, Vht, and Frh hydrogenases (Figures 5.5 – 5.7) 

and ferredoxin (Appendix A, Tables A.9, A.11, A.13) as the sources of this proton motive 

force in the 30˚C perchlorate-supplemented incubations.  

Methanogenesis, however, results in a net consumption of the proton motive force 

(Table 5.1), so one would expect to observe an increase in pH if all moles of substrate are 

made into the maximum number of moles of CH4 afforded by the reaction. The joint 

observations of significant pH drops with decreased CH4 production in perchlorate-

supplemented enrichments suggest that hydrogenotrophic methanogenesis must somehow 

be inhibited, and intermediate H2 generated during methylamine methanogenesis is not 

being recycled back to Vht. We theorize that the thermodynamic spontaneity of H2-

dependent perchlorate reduction (in the presence of an Ni catalyst) results in it 

outcompeting the endergonic first step of hydrogenotrophic methanogenesis (CO2 + MFR 

+ H2 à CHO-MFR + H2O + H+; ∆G˚' = +16 kJ/mol H2) (Bobik et al., 1990) (Figure 

5.11). Likewise, we imagine H2 intermediates generated during energy conserving steps 

of methylamine methanogenesis are siphoned off to reduce perchlorate in lieu of reducing 

MP via Vht (∆G˚' = -289 kJ/mol H2 for perchlorate reduction (Wang et al., 2008) vs. ∆G˚' 

= -50 kJ/mol H2 for MP reduction (Thauer et al., 2008; Mand and Metcalf, 2019)) (Figure 

5.11). Such interpretations warrant further investigation, but do fit within previously 

reported narratives of observed decreases in CH4 production in perchlorate-supplemented 

methanogenic cultures (Shcherbakova et al., 2015; Kral et al., 2016).  



 Chapter 5: 
Transcriptomics of “Martian” Methanogenesis  

208 

 
Figure 5.11. Proposed perchlorate reduction H2 siphoning scheme from 
methanogenesis pathways in M. barkeri. Abbreviations: Non-specific, common to 
multiple pathways; MF, methanofuran; CHO-MF, formyl-methanofuran; H4SPT, 
tetrahydrosarcinapterin; CHO-H4SPT, formyl-tetrahydrosarcinapterin; CH≡H4SPT, 
methenyl-tetrahydrosarcinapterin; CH2=H4SPT, methylene-tetrahydrosarcinapterin; 
CH3-H4SPT, methyl-tetrahydrosarcinapterin; CoM-SH, coenzyme M; CoB-SH, 
coenzyme B; CoB-S-S-CoM, CoB-CoM heterodisulfide; CH3-S-CoM, methyl-
coenzyme M; CH3-R, methylamine; MP, methanophenazine; Fd, ferredoxin; F420, 
coenzyme F420. 
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5.5.3 Evidence for selection against sulfur-containing amino acids. Cysteine 

and methionine are exceptionally sensitive to oxidation by reactive radical species (Bin et 

al., 2017). Both residues have shown strong binding affinities to both perchlorate and 

perchloric acid, resulting in the oxidation of methionine to methionine sulfoxide and 

cysteine to sulfonic acid (Armesto et al., 2000). The susceptibility of cysteine and 

methionine to react with perchlorate risks degradation of protein structure and function.  

The extensive and substantial down-regulation of cysteine and methionine 

metabolic pathways we observed in the presence of Na- and Mg-perchlorates (Figure 

5.10) suggests a concerted effort by M. barkeri to reduce the synthesis of these residues 

in the presence of a chaotropic agent. Likewise, in line with our inference that Ca(ClO4)2 

reduction may have already proceeded to completion in 30˚C cultures, the absence of this 

response in Ca(ClO4)2 transcriptomes would imply a return to transcriptional activity 

indistinguishable from M. barkeri grown in perchlorate-free media. The veracity of this 

interpretation can be assessed by future perchlorate measurements and, ideally, 

proteomics. 

 

5.6 CONCLUSIONS 

5.6.1 Implications for Martian methane. Our work corroborates previous 

findings demonstrating the progression of biological methanogenesis amidst exposure to 

oxidative perchlorate salts (Shcherbakova et al., 2015; Kral et al., 2016). Investigation 

into this phenomenon at the transcriptomic level provides novel insights into complicated 

interactions between perchlorates, methanogens, and their environment. For the first time 

we are able to identify perchlorate-associated decreases in CH4 production are linked to 
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radical and unexpected shifts in methanogenesis metabolisms, wherein M. barkeri 

forgoes hydrogenotrophic methanogenesis for comparatively low energy yielding 

methylamine pathways, utilizing substrates of uncertain provenance yet must somehow 

be ultimately sourced back to perchlorate reactions. Based on transcriptomic data 

supported by prior observations in the published literature, we hypothesize that 

hydrogenotrophic methanogenesis is outcompeted by abiotic perchlorate reduction 

siphoning H2 from energy-conserving reactions. Either through exceptional enzymatic 

ingenuity or an exceptional coincidence of chemistry, M. barkeri might be capable of 

utilizing glycine betaine not only to maintain osmotic balance, but also as a potential 

source of carbon for methanogenesis.  

These findings better constrain our growing understanding of how microbial life 

responds to strong oxidants, freezing temperatures, osmotic stress, and nutrient limitation 

– i.e., conditions characteristic of any habitable Martian environment where we may hope 

to find extant life (Weiss et al., 2000; Beaty et al., 2006; Rummel, 2009; Davila et al., 

2010; COSPAR, 2011; Kral et al., 2011; Kral and Altheide, 2013; Oren et al., 2014; 

Rummel et al., 2014; Shcherbakova et al., 2015; Kral et al., 2016; Sinha et al., 2017; 

Michalski et al., 2018; Jones et al., 2018; Sholes et al., 2019). Notably, our study shows 

that metabolic disruption by perchlorates at 30˚C is not reflected at 0˚C, which is more 

appropriately representative of the conditions at Mars Special Regions (Rummel et al., 

2014). This finding offers new perspectives to contextualize observations of Martian 

CH4, particularly in situ measurements made by the Curiosity rover (Webster et al., 2015; 

Webster et al., 2018), as diffuse emissions of trace CH4 are not inconsistent with our 

observations of decreased methanogenesis under freezing temperatures. This work offers 



 Chapter 5: 
Transcriptomics of “Martian” Methanogenesis  

211 

a glimpse into the remarkable adaptability of methanogens to survive under oxidative 

stresses that mimic the Martian subsurface. The inferences made from this study provide 

many exciting opportunities for further research to better understand methanogen 

ecophysiology in the context of a potential role in the Martian methane story.  

 

5.7 DATA AVAILABILITY  

RNA-Seq data will be made public at NCBI GenBank upon acceptance of this 

manuscript for publication. The source code of all transcriptomic analyses presented in 

this chapter are available upon request and will be made publicly available upon 

acceptance for publication. Appendix Tables A.8 – A.14 are available for viewing at 

https://tinyurl.com/rjlu2gb. 
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5.9 SUPPLEMENTARY INFORMATION 

5.9.1 SUPPLEMENTARY FIGURES 

A 

 

B 

Figure 5S.1. Weekly OD600 ± SD of Methanosarcina barkeri grown at 30˚C (A) and 
0˚C (B). 
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Figure 5S.2. Average ± SD transcript fragment counts per million mapped reads 
(FPM) at 30˚C. (n = 3 libraries per condition). Open reading frame number indicates 
position in genome (where ORF = 1 is the origin of replication). ORFs reference gene 
products found in Table 5S.3. 

 

30˚C Control 30˚C Ca(ClO4)2 30˚C Mg(ClO4)2 30˚C Na(ClO4)

0 1,000 2,000 3,000 0 1,000 2,000 3,000 0 1,000 2,000 3,000 0 1,000 2,000 3,000

0

25,000

50,000

75,000

100,000

Open Reading Frame

Tr
an

sc
rip

t F
ra

gm
en

ts
 p

er
 M

illi
on

 M
ap

pe
d 

Re
ad

s 
(F

PM
)



 Chapter 5: 
Transcriptomics of “Martian” Methanogenesis  

214 

 

Figure 5S.3. Average ± SD transcript fragment counts per million mapped reads 
(FPM) at 0˚C. (n = 3 libraries per condition). Open reading frame number indicates 
position in genome (where ORF = 1 is the origin of replication). ORFs reference gene 
products found in Table 5S.3. 

 

 

5.9.2 SUPPLEMENTARY TABLES 

Table 5S.1 Average pH of M. barkeri cultures. 
 30˚C 0˚C 

Condition Day 0 Day 28 Day 0 Day 28 
Control 7.0 6.51 7.0 6.81 

Mg(ClO4)2 7.2 6.49 7.2 6.76 
Na(ClO4) 7.25 6.48 7.25 6.86 

Ca(ClO4)2 7.0 6.78 7.0 6.53 
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Table 5S.2 RNA-Seq mapping results of quality-filtered reads, reported as average % 
mapping (± SD) (n = 3 libraries per condition). Abbreviations: CDS, coding sequence. 

Temperature (˚C) Condition 

% mapped 
to reference 

genome 

% mapped 
rRNA 
genes 

% mapped 
CDS 

regions 
30 Control 95.47  

(2.28) 
 

90.74 
(3.44) 

 

1.14 
(0.22) 

 
30 Na(ClO4) 97.29 

(0.79) 
 

93.68 
(1.80) 

 

1.39 
(0.58) 

 
30 Mg(ClO4)2 97.55 

(0.74) 
 

89.81 
(1.13) 

 

2.94 
(0.11) 

 
30 Ca(ClO4)2 97.05 

(1.50) 
 

94.27 
(1.50) 

 

0.91 
(0.23) 

 
0 Control 97.15 

(0.93) 
 

91.81 
(1.29) 

 

1.71 
(0.42) 

 
0 Na(ClO4) 97.18 

(0.59) 
 

92.42 
(1.18) 

 

1.67 
(0.04) 

 
0 Mg(ClO4)2 97.58 

(0.76) 
 

93.36 
(1.84) 

 

1.07 
(0.16) 

 
0 Ca(ClO4)2 96.85 

(0.96) 
 

93.19 
(0.94) 

 

1.55 
(0.24) 
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CHAPTER 6 
 
Conclusions 

6.1 NEW CONTRIBUTIONS AND MAJOR FINDINGS  

 Technological advances in high-throughput sequencing, imaging, geochemical 

instrumentation, and computational power are rapidly changing the fields of microbial 

ecology and biogeochemistry. As we continue to improve our understanding of the 

myriad physical and geochemical parameters that influence the habitability of extreme 

environments, so too are we perpetually surprised by new revelations of the remarkable 

ways in which microbial life makes the most of available free energy on the biotic fringe. 

In this dissertation we have investigated the extremes of microbial CH4 metabolisms, 

examining both model organisms and complex environmental communities through 

multi-disciplinary, multi-methodological lenses to expand our understanding of the 

diversity and metabolic capabilities of methanogens and anaerobic methanotrophs as they 

relate to the deep subsurface of Earth and Mars. 

In Chapter 2 we discussed the development of FISH-TAMB, a novel molecular 

tool that enables microbial ecologists to fluorescently identify living cells based on the 

expression of targeted functional genes. We showed the potential widespread 

applicability of FISH-TAMB by labeling targeted mRNA in both Archaea and Bacteria, 

including pure culture isolates of M. barkeri and E. coli, as well as an enrichment of 

ANME-2 from BE326 BH2 fracture fluid collected 1.34 km below ground in South 

Africa. Using confocal microscopy equipped with a Perfect Focus System, we captured 

what appeared to be real-time fluorescent labeling of mRNA in living cells. Using the 

inducible Lac operon system in E. coli, we were able to show via flow cytometry the 
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sensitivity and specificity of FISH-TAMB to the expression of LacZα and transformed 

McrA. The detection of McrA mRNA in E. coli speaks to FISH-TAMB’s potential as a 

powerful tool to identify the ecophysiological roles novel or poorly characterized 

lineages, or even taxa which may have obtained functional genes through horizontal gene 

transfer.   

Among potentially novel metabolic players in deep biosphere CH4 cycling is 

Candidatus “Bathyarchaeota” BE326-BA-RLH, whose genomic potential for AOM 

coupled to dissimilatory nitrate reduction to ammonia (DNRA) is described in Chapter 3 

as the first evidence for evidence for archaeal AOM outside the phylum Euryarchaeota. 

Originally characterized from continental fracture fluid in South Africa, we showed in 

Chapter 4 that  Ca. “Bathyarchaeota” BE326-BA-RLH may be pervasive in the deep 

biosphere based on the detection of 16S rRNA gene sequences from closely related sister 

lineages from the Nankai Trough. From maximum likelihood estimations of 16S rRNA 

gene phylogeny, we showed that Ca. BE326-BA-RLH belongs to the deeply-branching 

Ca. “Bathyarchaeota” class Subgroup-18, sharing common ancestry with Subgroup-3, 

known to contain Ca. “Bathyarchaeota” methanogens BA1 and BA2 (Evans et al., 2015). 

The apparent monophyly of methane-metabolizing Ca. “Bathyarchaeota” lineages as well 

as this phylum’s divergent Mcr genes support the argument that methanogenesis (and 

now perhaps AOM) evolved in a common ancestor to the Ca. “Bathyarchaeota” and the 

Euryarchaeota (Lloyd, 2015).    

 If the evolutionary history of AOM metabolisms (based on reverse 

methanogenesis coupled to the reduction of an electron acceptor; i.e., excluding the intra-

aerobic pathway unique to Ca. “Methylomirabilis oxyfera” (Ettwig et al., 2010)) indeed 
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predates the evolution of Euryarchaeota ANMEs, the apparent scarcity of these clades in 

environments where biological AOM is ostensibly occurring must mean that either they 

are biased against detection in sequencing datasets or other uncharacterized groups must 

be filling the same functional niche. In Chapter 4 we discussed both possibilities when 

faced with isotopic evidence for AOM at IODP site C0023A in the Nankai Trough. 

Motivated by suggestive in situ δ13CH4 values at site C0023A and favorable 

thermodynamic predictions, we performed year-long 13CH4 tracer incubations on 

C0023A sediment slurries at 40 MPa and temperatures between 40˚C and 80˚C to assess 

the existence of piezophilic and thermophilic ANMEs. Despite concerns surrounding low 

in situ cell counts, we observed statistically significant DIC production within the first 14 

days of incubation with corresponding positive δ13CDIC excursions suggestive of AOM. 

In addition to 16S rRNA gene-based identification of Ca. “Bathyarchaeota” BE326-BA-

RLH sister lineages, in metagenomes from 257 and 616 mbsf we were also able to 

identify evidence of ANME-2d, Ca. “Methylomirabilis oxyfera”, and Ca. 

“Bathyarchaeota” BA1 and BA2, respectively corresponding to approximate in situ 

temperatures of 37.6˚C and 73.1˚C. Using a combination of FISH-TAMB and 16S rRNA 

FISH we were able to provide microscopic confirmation of ANME-1 in sulfate-

supplemented AOM enrichments from 257 mbsf. Collectively, these data provide 

evidence for new upper temperature and pressure records for AOM.  

 Continuing with the theme of exploring new frontiers, in Chapter 5 we performed 

transcriptomics on the methanogen M. barkeri to gain insight into the potential of a 

microbial origin of CH4 on modern Mars. Consistent with previous findings, we observed 

a decrease in CH4 production when M. barkeri was grown at 0˚C and at 30˚C in high 
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concentrations of perchlorate salts. The combined exposure of M. barkeri to perchlorates 

and 0˚C exposure, however, did not diminish methanogenesis further than at 0˚C alone. 

From transcriptomic data we infer that the regulatory shifts tied to these observations are 

likely due to interactions between perchlorates and media components. 

Intermittent nitrogen starvation due to interactions between perchlorates and fixed 

nitrogen was inferred by the simultaneous up-regulation of ammonia transporters, 

nitrogenases, and their P-II regulatory components. We suggested that an up-regulation 

of methylamine-based methanogenesis pathways in perchlorate-amended cultures was 

tied to perchlorate’s degradation of the osmoprotectant glycine betaine to trimethylamine 

(Oren, 1990; Seibel and Walsh, 2002). Based on prior reports of perchlorate reduction in 

methanogenic media, we proposed that the highly exergonic reaction of H2-dependent 

perchlorate reduction could be catalyzed by free Ni in the media, but also perhaps at the 

Ni active sites of NiFe hydrogenases. Significant down-regulation of the synthesis of 

redox-sensitive amino acids provided convincing evidence of regulatory shifts in direct 

response to perchlorate exposure. With respect to what this means for microbial 

methanogenesis on Mars, we noted that these perchlorates interactions were apparently 

minimized when M. barkeri was grown in their presence at 0˚C. We concluded that the 

sub-freezing temperatures typical of Mars pose a greater risk to the survival of 

methanogens than the oxidizing effects of perchlorate salts. 

 

6.2 OPEN QUESTIONS AND OPPORTUNITIES FOR FUTURE RESEARCH 

6.2.1 Divergent Mcr proteins and substrate affinities for higher alkanes. The 

discovery of the metabolic potential for methanogenesis within the Ca. “Bathyarchaeota” 
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(Evans et al., 2015) has ignited a gold rush to characterize the metabolic capacities of 

microbial dark matter possessing divergent methyl coenzyme M marker genes that are 

undetectable by conventional Mcr primer sets (e.g., Lloyd, 2015). In addition to our 

description of Ca. “Bathyarchaeota” BE326-BA-RLH in Chapter 3 (Harris et al., 2018), 

Mcr sequences have been recently described in several other dark matter clades, 

including candidate classes Ca. “Hadesarchaea” and Ca. “Archaeoglobi” within the 

Euryarchaeota (Laso-Pérez et al., 2016; Wang et al., 2019) and five other candidate 

archaeal phyla: Ca. “Verstraetarchaeota” (Vanwonterghem et al., 2016; Berghuis et al., 

2019), Ca. “Korarchaeota” (Borrel et al., 2019; McKay et al., 2019; Wang et al., 2019), 

Ca. “Nezhaarchaeota” (Wang et al., 2019), and Ca. “Helarchaeota” (Seitz et al., 2019).  

Selective enrichments of two candidate euryarchaeal genera, Ca. “Argoarchaeum” 

and Ca. “Syntrophoarchaeum”, have respectively shown evidence for the anaerobic 

oxidation of ethane (AOE) and butane (AOB) (Laso-Pérez et al., 2016; Laso-Pérez et al., 

2018; Chen et al., 2019). The anaerobic oxidation of propane (AOP) has also been 

documented in marine sediments (Quistad and Valentine, 2011), but the identity of the 

responsible organism(s) remains a mystery. These discoveries have led to speculation that 

clades possessing divergent Mcr proteins, such as the Ca. “Bathyarchaeota”, are actually 

consumers of higher alkanes rather than CH4 (e.g., Wang et al., 2019). These claims 

warrant further investigation. Our results from Chapter 4, while not ruling out the Ca. 

“Bathyarchaeota” as active ANMEs in the Nankai Trough, did not explicitly demonstrate 

their mediation of AOM, either. Indeed, the characterization of Ca. “Bathyarchaeota” 

BA1 and BA2 as methanogens also requires experimental verification, as their 

metabolism has only been inferred from metagenomics (Evans et al., 2015). A “smoking 
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gun” is required to confirm the substrate affinities of Mcr proteins belonging to Ca. 

“Bathyarchaeota” and other taxa.  

In addition to testing the theory that Ca. “Bathyarchaeota” BE326-BA-RLH 

couples AOM to DNRA, experiments coupling 13C-labeled short-chain alkanes (e.g., 

methane, ethane, butane, propane) to 15N-labeled nitrate and nitrite in a series of 

combinatorial selective enrichments can assess for AOM, AOE, AOB, and AOP. 

Through a combination of SIP, 16S rRNA FISH, and nanoSIMS, ideally, we observations 

of a stoichiometric balance in the consumption of the supplied electron acceptor and 

donor, and of FISH-labeled Ca. BE326-BA-RLH cells with 13C- and 15N-enriched 

biomass relative to other cells in the enrichment would support the theory of anaerobic 

short-chain alkane oxidation by Ca. “Bathyarchaeota” species. Unfortunately, this 

endeavor is much easier said than done. Euryarchaeal ANMEs are thought to have 

doubling times on the order of weeks to months (Nauhaus et al., 2007; Holler et al., 

2011), and the demonstration of butane oxidation in Ca. “Syntrophoarchaeum” was the 

result of 10 years of serial enrichment (Laso-Pérez et al., 2016). Evidence for 

copiotrophic AOM in our high pressure and high temperature incubations in Chapter 4 

offers promising potential for hyperbaric cultivation to further optimize growth 

conditions of deep biosphere organisms and thus shorten previous doubling time 

estimates. These efforts would nonetheless require fortunate circumstances such as being 

able to maintain high pressure chemostats and working with starting materials in which 

the target organism has high relative in situ abundance. Further refinement of FISH-

TAMB to separate cells of interest out of complex sedimentary matrices could certainly 

expedite biomass accumulation, but such fine tuning will be a project unto itself.  
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6.2.2 Next steps in the assessment of potential Martian methanogenesis. The 

discovery of perchlorate salts across the Martian surface is both a blessing and a curse 

when it comes to the search for life on the Red Planet. On the one hand, perchlorates are 

highly chaotropic and can disrupt the hydrogen bonds that make up the helical structure 

of nucleic acids and the secondary structure of proteins. On the other hand, they are 

excellent potential electron acceptors for microbial redox reactions (Coates and 

Achenbach, 2004; Yu et al., 2006; Bardiya and Bae, 2011; Liebensteiner et al., 2013). 

They are also so hygroscopic that they have been observed to deliquescence on the 

surface of the Phoenix lander near Mars’ north polar ice cap, where a warm summer day 

may see temperatures rise to a high of -75˚C (Stillman and Grimm, 2011).   

In Chapter 5 we demonstrate the remarkable resiliency and adaptability of M. 

barkeri when it was grown in the presence of perchlorates. But a few lingering questions 

remain from this work. First is the question of perchlorate reduction. We made 

assumptions that perchlorate production proceeded in our enrichments based on 1) a 

puzzling shift in methanogenesis from the use of H2 to methylamines, and 2) the 

occurrence of this phenomenon in other methanogen studies (Shcherbakova et al., 2015; 

Kral et al., 2016). We proposed that H2 was the reducing agent responsible for the 

reduction of perchlorate, arguing that the reaction could be abiotically catalyzed by free 

nickel and perhaps accelerated by nickel active sites in hydrogenases.  

The first step in testing this hypothesis requires confirmatory measurements to 

document the reduction of perchlorate (which can be made using ion chromatography 

mass spectrometry) and oxidation of H2 (whose consumption can be monitored using gas 

chromatography). We can then proceed to assess the potential of nickel as a catalyst by 
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simply comparing rates of perchlorate reduction in sterile, cell-free methanogenic media 

with and without supplemented trace nickel. We can also compare these rates to those 

that are observed in cell cultures to assess whether a biological component is in play. If 

perchlorate reduction rates indeed increase in the presence of M. barkeri, we can then 

begin to consider isolating and purifying NiFe hydrogenases for substrate binding and 

affinity assays.  

A second unknown resulting from our research is the source of methylamines in 

the perchlorate-amended cultures. We postulated that the degradation of glycine betaine 

from complex media components (e.g., yeast extract and casitone) was a likely culprit, as 

it fit well within our narrative of up-regulated glycine betaine transporters as a means to 

help maintain osmotic balance. We can quantify both glycine betaine and methylamines 

using high performance liquid chromatography (HPLC) in the same chronological 

scheme described above to confirm our inferences and to assess if degradation is 

primarily abiotic or biologically mediated. 

 With regards to the next steps in the transcriptomic study of M. barkeri under 

simulated Martian conditions, we are interested in identifying regulatory shifts that are 

associated with methanogenesis at low pressure. Mars’ atmospheric pressure at the 

surface is ~7-8 mbar (Hess et al., 1980; Withers, 2012), less than 1% that of Earth. The 

senior thesis work of Jana Suriano (’17) demonstrated that hydrogenotrophic and 

acetoclastic methanogenesis can proceed at ~30 mbar in the permafrost methanogen 

Methanosarcina soligelidi (M. soligelidi) (Suriano, 2017). We intend to follow up on 

Jana’s work and grow M. barkeri at 10 mbar in a pressure-, temperature-, and relative 

humidity-controlled Mars simulation chamber located in Andrew Schuerger’s lab at the 
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University of Florida (Figure 6.1; Schuerger et al., 2008; Schuerger et al., 2011). While 

Jana grew M. soligelidi with two carbon sources to make CH4 (CO2 and CH3COO-), we 

plan to grow M. barkeri hydrogenotrophically (H2/CO2) to assess how decreased pH2 at 

Martian atmospheric pressure impacts methanogenesis.  

 

Figure 6.1 The Mars simulation chamber (MSC) in the Schuerger lab at the University 
of Florida. (A) External view, equipped with a liquid nitrogen temperature control 
system (LNTCS), a xenon-arc lamp equipped for diurnal UV cycling, and a quadrupole 
mass spectrometer residual gas analyzer (RGA).  (B) Twin microbial assay chambers 
(MAC) inside the MSC with connections for real-time measurements of relative 
humidity (RH), pressure (P) and temperature (T). Headspace composition in each 
MAC can be measured by evacuating gas through the vacuum pump (VP), which 
connects to the RGA. A gas flush/resupply (GF/R) line recharges the headspace. 
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Supplementary Tables 
 
Table A.1 Gene abbreviations of proteins visualized in Figure 3.3. 

Encoded Protein Nomenclature 
Formate dehydrogenase Fdh 

Carbon monoxide dehydrogenase CooS 
Tungsten-containing formylmethanofuran dehydrogenase Fwd 

Formylmethanofuran:tetrahydromethanopterin (H4MPT) formyltransfersase Ftr 
Methenyl-H4MPT cyclohydrolase Mch 

F420-reducing hydrogenase Frh 
F420-H2-dependent quinone reductase Fqo 

F420-reducing methylene-H4MPT dehydrogenase Mtd 
F420-H2-dependent methylene-H4MPT reductase Mer 

Na+ transporting methyl-H4MPT:coenzyme M methyltransferase Mtr 
Methyl-coenzyme M reductase Mcr 

Methylamine-specific methylcobalamin:coenzyme M methyltransferase MtbA 
Trimethylamine methyltransferase corrinoid protein mttC 

Heterodisulfide reductase Hdr 
Methyl viologen reducing hydrogenase Mvh 

Carbon monoxide dehydrogenase Cdh 
Acetyl-CoA synthetase Acd 

Phosphate acetyltransferase Pta 
Acetate kinase Ack 

Pyruvate ferredoxin oxidoreductase PorA 
Phosphoenolpyruvate synthase PpsA 

Phosphoenolpyruvate carboxylase PpcA 
Malate dehydrogenase Mdh 

Fumarate hydratase Fum 
Succinate dehydrogenase Sdh 

Succinate-CoA ligase SucD 
2-oxoglutarate synthase Kor 

Isocitrate dehydrogenase Idh 
Aconitate hydratase Acn  

ATP-citrate lyase Acl 
Archaeal flagellin FlaI 

Methyl-accepting chemotaxis protein MCP 
Cytoplasmic chemotaxis proteins Che 

Ion-transporting ATP synthase ATPase 
Periplasmic nitrate oxidoreductase Nar 

Ammonium-forming periplasmic nitrite reductase Nrf 
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Table A.2 Gene abbreviations of proteins visualized in Figures 5.4 – 5.7 
Encoded Protein Nomenclature 

Methylamine-specific methylcobalamin:coenzyme M methyltransferase MtbA 
Dimethylamine:corrindoid methyltransferase MtbB 

Dimethylamine methyltransferase corrinoid protein MtbC 
Dimethylamine permease MtbP 

Monomethylamine:corrinoid protein MtmB 
Monomethylamine methyltransferase corrinoid protein MtmC 

Monomethylamine permease MtmP 
Trimethylamine:corrinoid methyltransferase MttB 

Trimethylamine methyltransferase corrinoid protein MttC 
Methyl-coenzyme M reductase subunit Mcr 

CoB--CoM heterodisulfide reductase subunit Hdr 
Methanol:corrinoid methyltransferase MtaB 

Methanol methyltransferase corrinoid protein MtaC 
Methanol-specific methylcobalamin:coenzyme M methyltransferase MtaA 

CoB--CoM heterodisulfide reductase 2  Hdr 
Methanophenazine hydrogenase large subunit VhtA 

Methanophenazine hydrogenase cytochrome b subunit VhtC 
Methanophenazine hydrogenase small subunit VhtG 

Na+ transporting methyl-H4MPT:coenzyme M methyltransferase Mtr 
F420-H2-dependent methylene-H4MPT reductase Mer 

Methenyl-tetrahydrosarcinopterin (H4SPT) cyclohydrolase Mch 
Formylmethanofuran-H4SPT formyltransferase Ftr 

F420-reducing hydrogenase Frh 
Mo-containing formylmethanofuran dehydrogenase Fmd 

Energy-conserving hydrogenase (ferredoxin) Ech 
F420H2 dehydrogenase Fpo 

Carbon monoxide dehydrogenase/Acetyl-CoA synthase complex Cdh/Coo 
 
Table A.3 Abbreviated metabolites visualized in Figures 5.4 – 5.7 

Metabolite Nomenclature 
Coenzyme M CoM-SH 

Methyl-coenzyme M CH3-S-CoM 
Coenzyme B CoB-SH 

Coenzyme F420H2 F420red 
Coenzyme F420 F420ox 

Reduced ferredoxin Fdred 
Oxidized ferredoxin Fdox 

Methanophenazine-H2 MPred 
Methanophenazine MPox 

Tetrahydrosarcinopterin H4MPT 
Acetyl-Coenzyme A Acetyl-CoA 

Methanofuran MFR 
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Table A.4 Gene abbreviations of proteins visualized in Figure 5.8 
Encoded Protein Nomenclature 

Methylamine-specific methylcobalamin:coenzyme M methyltransferase MtbA 
Dimethylamine:corrindoid methyltransferase MtbB 

Dimethylamine methyltransferase corrinoid protein MtbC 
Dimethylamine permease MtbP 

Monomethylamine:corrinoid protein MtmB 
Monomethylamine methyltransferase corrinoid protein MtmC 

Monomethylamine permease MtmP 
Trimethylamine:corrinoid methyltransferase MttB 

Trimethylamine methyltransferase corrinoid protein MttC 
 
 
Table A.5 Gene abbreviations of proteins visualized in Figure 5.9. 

Encoded Protein Nomenclature 
Nitrogenase FeS scaffold assembly protein NifB 

Nitrogenase FeMo protein alpha chain NifD 
Nitrogenase FeMo biosynthesis protein NifE 

Nitrogenase FeMo reductase and maturase protein NifH 
Nitrogenase regulatory protein P-II NifI 

Nitrogenase FeMo protein beta chain NifK 
Nitrogenase FeMo-cofactor scaffold and assembly protein  NifN 

Nitrogenase vanadium cofactor synthesis protein VnfE 
Nitrogenase vanadium-iron protein beta chain VnfK 

 
 
Table A.6 Gene abbreviations of proteins visualized in Figure 5.10 

Encoded Protein Nomenclature 
Tryptophan beta chain TrpB 
Threonine synthetase ThrC 

Serine—glyoxylate aminotransferase SGAT 
Phosphoserine phosphatase SerB 

Aspartate carbamoyltransferase PyrB 
Pyrrolysine synthetase PylC 

Phosphoribosylformylglycinamidine synthase, glutamine amidotransferase 
subunit 

PyrQ 

Pyrroline-5-carboxylate reductase ProC 
Prephenate dehydratase PheA2 

Methionine gamma-lyase Mgl 
5-methyltetrahydropteroyltriglutamate—homocysteine methyltransferase MetE 

Diaminopimelate decarboxylase LysA 
Branched-chain amino acid aminotransferase IlvE 

Histidinol dehydrogenase HisD 
Aspartate aminotransferase / Histidinol-phosphate aminotransferase HisC 

Serine hydroxymethyltransferase / L-threonine aldolase / L-allo threonine 
aldolase 

GlyA 
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Glutamate synthase (NADPH) small chain GltD 
Glutamine synthetase type I GlnA 
Glutamate dehydrogenase 2 GdhA 

Cysteine synthase CysK 
Serine acetyltransferase CysE 

Biosynthetic aromatic amino acid aminotransferase alpha / Aspartate 
aminotransferase 

AspB 

Asparagine synthetase (glutamine hydrolyzing) AsnB 
Argininosuccinate synthase ArgG 

Arginine deaminase ArcA 
Ornithine cyclodeaminase Ala 

Phosphoserine aminotransferase SerC 
D-3-phosphoglycerate dehydrogenase SerA 
5'-methylthioadenosine phosphorylase MtnN 

Methylthioribose-1-phosphate isomerase MtnA 
S-adenosylhomocysteine deaminase MtaD 

Homoserine O-acetyltransferase MetX 
Archaeal S-adenosylmethionine synthetase MetK 

O-acetylhomoserine sulfhydralase MetC 
Malade dehydrogenase Mdh 

Aspartokinase LysC 
Homoserine dehydrogenase Hsd 

Ferredoxin Fdx 
Aspartate aminotransferase AspC 

Aspartate-semialdehyde dehydrogenase Asd 
Adenosylhomocysteinase AchY 

 
 
Table A.7 Amino acid abbreviations reported from Figure 5.10. 

Amino Acid Nomenclature 
Alanine A 

Arginine R 
Asparagine N 

Aspartate D 
Cysteine C 

Glutamine Q 
Glutamate E 

Glycine G 
Histidine H 

Isoleucine I 
Lysine K 

Methionine M 
Phenylalanine F 

Proline P 
Pyrrolysinea O 

Serine S 
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Threonine T 
Tryptophan W 

Tyrosine Y 
Valine V 

aPyrrolysine is a lysine derivative encoded by the UAG codon in Methanosarcina barkeri 
(Srinivasan et al., 2002).  
 
 
Tables A.8 – A.14 are available to view and download at https://tinyurl.com/rjlu2gb. 
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Figure B.1. Differential expression (Log2-fold change, LFC) of genes involved in alanine, 
aspartate, and glutamate metabolisms in M. barkeri. Perchlorate-amended 30˚C and 0˚C 
perchlorate-free control cultures are relative to 30˚C perchlorate-free control. 0˚C perchlorate-
amended cultures are relative to 0˚C perchlorate-free control. Significant differential 
expression was identified via Wald test (P < 0.05). Gene abbreviations: PuuE, 4-
aminobutyrate aminotransferase; PurB, Adenylosuccinate lyase; PurA, Adenylosuccinate 
synthase; PurF, Amidophosphoribosyltransferase; ArgH, Arginosuccinate lyase; ArgG, 
Argininosuccinate synthase; AsnB, Asparagine synthetase; AspC, Aspartate aminotransferase; 
PyrI, Aspartate carbamoyltransferase regulatory subunit; AspB, Biosynthetic aromatic amino 
acid aminotransferase alpha; CarB, Carbamoyl-phosphate synthase large chain; CarA, 
Carbamoyl-phosphate synthase small subunit; GlmS, Glucosamine—fructose-6-phosphate 
aminotransferase; GadAB, Glutamate decarboxylase; GdhA, Glutamate dehydrogenase; GltD, 
Glutamate synthase [NADPH] large chain; GlnA, Glutamine synthetase type I, Ala, Ornithine 
cyclodeaminase; PurM, Phosphoribosylformylglycinamidine cyclo-ligase; GabD, Succinate-
semialdehyde dehydrogenase.  
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Figure B.2. Differential expression (Log2-fold change, LFC) of genes involved in arginine 
biosynthesis in M. barkeri. Perchlorate-amended 30˚C and 0˚C perchlorate-free control 
cultures are relative to 30˚C perchlorate-free control. 0˚C perchlorate-amended cultures are 
relative to 0˚C perchlorate-free control. Significant differential expression was identified via 
Wald test (P < 0.05). Gene abbreviations: ArgB, Acetylglutamate kinase; ArgD, 
Acetylornithine aminotransferase; ArcA, Arginine deaminase; ArgH, Arginosuccinate lyase; 
ArgG, Arginosuccinate synthase; AspC, Aspartate aminotransferase; AspB, Biosynthetic 
aromatic amino acid aminotransferase alpha; ArgA, GCN5-related N-acetyltransferase; GdhA, 
Glutamate dehydrogenase; GlnA, Glutamine synthetase type I; ArgJ, Glutamate N-
acetyltransferase; ArgC, N-acetyl-gamma-glutamyl-phosphate reductase; ArgF, Ornithine 
carbamoyltransferase; PurQ, Phosphoribosylformylglycinamidine synthase, glutamine 
amidotransferase subunit.  
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Figure B.3. Differential expression (Log2-fold change, LFC) of genes involved in arginine and 
proline metabolisms in M. barkeri. Perchlorate-amended 30˚C and 0˚C perchlorate-free 
control cultures are relative to 30˚C perchlorate-free control. 0˚C perchlorate-amended 
cultures are relative to 0˚C perchlorate-free control. Significant differential expression was 
identified via Wald test (P < 0.05). Gene abbreviations: SpeB, Agmatinase; AspC, Aspartate 
aminotransferase; AspB, Biosynthetic aromatic amino acid aminotransferase alpha; FCY1, 
Cytosine deaminase; ProA, Gamma-glutamyl phosphate reductase; ProB, Glutamate 5-kinase; 
ProC, Pyrroline 5-carboxylate reductase; PdaD, Pyruvoyl-dependent arginine decarboxylase.  
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Figure B.4. Differential expression (Log2-fold change, LFC) of genes involved in glycine, 
serine, and threonine metabolisms in M. barkeri. Perchlorate-amended 30˚C and 0˚C 
perchlorate-free control cultures are relative to 30˚C perchlorate-free control. 0˚C perchlorate-
amended cultures are relative to 0˚C perchlorate-free control. Significant differential 
expression was identified via Wald test (P < 0.05). Gene abbreviations: Asd, Aspartate-
semialdehyde dehydrogenase; LysC, Aspartokinase; Pss, CDP-diaglycerol--serine O-
phosphatidyltransferase; SerA, D-3-phosphoglycerate dehydrogenase; Hsd, Homoserine 
dehydrogenase; GpmA, Phosphoglycerate mutase; SerC, Phosphoserine aminotransferase; 
SerB, Phosphoserine phosphatase, GlyA, Serine hydroxymethyltransferase/L-threonine 
aldolase; SGAT, Serine--glyoxylate aminotransferase; ThrC, Threonine synthase; TrpB, 
Tryptophan synthase beta chain. 
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Figure B.5. Differential expression (Log2-fold change, LFC) of genes involved in histidine 
metabolism in M. barkeri. Perchlorate-amended 30˚C and 0˚C perchlorate-free control cultures 
are relative to 30˚C perchlorate-free control. 0˚C perchlorate-amended cultures are relative to 
0˚C perchlorate-free control. Significant differential expression was identified via Wald test (P 
< 0.05). Gene abbreviations: AspC, Aspartate aminotransferase; HisG, ATP 
phosphoribosyltransferase; AspB, Biosynthetic aromatic amino acid aminotransferase alpha; 
HisD, Histidinol dehydrogenase; HisB, Imidazoleglycerol-phosphate dehydratase; HisE, 
Phosphoribosyl-ATP pyrophosphatase; HisA, Phosphoribosylformimino-5-aminoimidazole 
carboxamide ribotide isomerase.  
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Figure B.6. Differential expression (Log2-fold change, LFC) of genes involved in lysine and 
pyrrolysine biosynthesis in M. barkeri. Perchlorate-amended 30˚C and 0˚C perchlorate-free 
control cultures are relative to 30˚C perchlorate-free control. 0˚C perchlorate-amended 
cultures are relative to 0˚C perchlorate-free control. Significant differential expression was 
identified via Wald test (P < 0.05). Gene abbreviations: ArgD, Acetylornithine 
aminotransferase; Asd, Aspartate-semialdehyde dehydrogenase; LysC, Aspartokinase; AksA, 
Coenzyme B synthesis from 2-oxoglutarate: steps 1, 6, and 10; AksD, Coenzyme B synthesis 
from 2-oxoglutarate: steps 4, 7, 8, 11, and 12 (large subunit); AksE, Coeznyme B synthesis 
from 2-oxoglutarate: steps 4, 7, 8, 11, and 12 (small subunit); LysA, Diaminopimelate 
decarboxylase; DapB, Dihydrodipicolinate reductase; DapA, Dihydrodipicolinate synthase; 
Hom; Homoserine dehydrogenase; DapL, LL-diaminopimelate aminotransferase; PylB, 
Proline 2-methylase for pyrrolysine biosynthesis; PylD, Proline reductase for pyrrolysine 
biosynthesis; PylC, Pyrrolysine synthetase.  
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Figure B.7. Differential expression (Log2-fold change, LFC) of genes involved in lysine 
degradation in M. barkeri. Perchlorate-amended 30˚C and 0˚C perchlorate-free control 
cultures are relative to 30˚C perchlorate-free control. 0˚C perchlorate-amended cultures are 
relative to 0˚C perchlorate-free control. Significant differential expression was identified via 
Wald test (P < 0.05). Gene abbreviations: KamA, Lysine 2,3-aminomutase; GabD, Succinate-
semialdehyde dehydrogenase [NAD]. 
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Figure B.8. Differential expression (Log2-fold change, LFC) of genes involved in 
phenylalanine metabolism in M. barkeri. Perchlorate-amended 30˚C and 0˚C perchlorate-free 
control cultures are relative to 30˚C perchlorate-free control. 0˚C perchlorate-amended 
cultures are relative to 0˚C perchlorate-free control. Significant differential expression was 
identified via Wald test (P < 0.05). Gene abbreviations: AspC, Aspartate aminotransferase; 
AspB, Biosynthetic aromatic amino acid aminotransferase alpha; KatG, Catalase; PaaI, 
Phenylacetic acid degradation protein; PaaK, Phenylacetate-CoA ligase. 
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Figure B.9. Differential expression (Log2-fold change, LFC) of genes involved in 
phenylalanine, tyrosine, and tryptophan metabolism in M. barkeri. Perchlorate-amended 30˚C 
and 0˚C perchlorate-free control cultures are relative to 30˚C perchlorate-free control. 0˚C 
perchlorate-amended cultures are relative to 0˚C perchlorate-free control. Significant 
differential expression was identified via Wald test (P < 0.05). Gene abbreviations: Adh, 2-
amino-3,7 dideoxy-D-threo-hept-6-ulosonate synthase; AroD, 3-dehydroquinate dehydratase I; 
AroB, 3,7-dideoxy-D-threo-hepto-2,6-diulosonate synthase; AroA, 5-Enolpyruvylshikimate-3-
phosphate synthase; TrpD, Anthranilate phosphoribosyltransferase; TrpE, Anthranilate 
synthase, aminase component; AspC, Aspartate aminotransferase; AspB, Biosynthetic aromatic 
amino acid aminotransferase alpha; PheA1, Chorismate mutase I; AroC, Chorismate synthase; 
AldA, Fructose-bisphosphate aldolase; TrpC, Indole-3-glycerol phosphate synthase; TrpF, 
Phosphoribosylanthranilate isomerase; TryA2, Prephenate and/or arogenate dehydrogenase; 
PheA2, Prephenate dehydratase; AroE, Shikimate 5-dehydrogenase I alpha; AroK, Shikimate 
kinase II; TrpA, Tryptophan synthase alpha chain; TrpB, Tryptophan synthase beta chain.  
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Figure B.10. Differential expression (Log2-fold change, LFC) of genes involved in tryptophan 
metabolism in M. barkeri. Perchlorate-amended 30˚C and 0˚C perchlorate-free control cultures 
are relative to 30˚C perchlorate-free control. 0˚C perchlorate-amended cultures are relative to 
0˚C perchlorate-free control. Significant differential expression was identified via Wald test (P 
< 0.05). Gene abbreviations: AtoB, Beta-ketoacyl synthase/thiolase; KatG, Catalase; KynB, 
Metal-dependent hydrolase; IpdC, Pyruvate decarboxylase. 
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Figure B.11. Differential expression (Log2-fold change, LFC) of genes involved in tyrosine 
metabolism in M. barkeri. Perchlorate-amended 30˚C and 0˚C perchlorate-free control cultures 
are relative to 30˚C perchlorate-free control. 0˚C perchlorate-amended cultures are relative to 
0˚C perchlorate-free control. Significant differential expression was identified via Wald test (P 
< 0.05). Gene abbreviations: YiaY, Alcohol dehydrogenase; AspC, Aspartate 
aminotransferase; AspB, Biosynthetic aromatic amino acid aminotransferase alpha; MfnA, L-
tyrosine decarboxylase; GabD, Succinate-semialdehyde dehydrogenase [NAD]. 
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Figure B.12. Differential expression (Log2-fold change, LFC) of genes involved in valine, 
leucine, and isoleucine biosynthesis in M. barkeri. Perchlorate-amended 30˚C and 0˚C 
perchlorate-free control cultures are relative to 30˚C perchlorate-free control. 0˚C perchlorate-
amended cultures are relative to 0˚C perchlorate-free control. Significant differential 
expression was identified via Wald test (P < 0.05). Gene abbreviations: CimA, (R)-citramalate 
synthase; LeuA, 2-isopropylmalate synthase; LeuC, 3-isopropylmalate dehydratase; IlvI, 
Acetolactate synthase large subunit; IlvG, Acetolactate synthase small subunit; IlvE, 
Branched-chain amino acid aminotransferase alpha; IlvD, Dihydroxy-acid dehydratase; IlvC, 
Ketol-acid reductoisomerase. 
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Figure B.13. Differential expression (Log2-fold change, LFC) of genes involved in valine, 
leucine, and isoleucine degradation in M. barkeri. Perchlorate-amended 30˚C and 0˚C 
perchlorate-free control cultures are relative to 30˚C perchlorate-free control. 0˚C perchlorate-
amended cultures are relative to 0˚C perchlorate-free control. Significant differential 
expression was identified via Wald test (P < 0.05). Gene abbreviations: FrnL, Beta-ketoacyl 
synthase/thiolase; IlvE, Branched-chain amino acid aminotransferase; HmgS, 
Hydroxymethylglutaryl-CoA synthase; VorA, Ketoisovalerate oxidoreductase. 
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Appendix C 
 
Supplementary Files 
 
File_3C.1.fasta: https://tinyurl.com/u23bqg6 
 
File_3C.2.fasta: https://tinyurl.com/vmytlyl 
 
File_4C.1.html: https://tinyurl.com/tgsxnzc 
 
File_4C.2.html: https://tinyurl.com/v8ooojs 
 
 
 


